Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Microbiol ; 61(2): 259-270, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36808561

RESUMEN

Varicella-Zoster virus (VZV) causes varicella in primary infection of children and zoster during reactivation in adults. Type I interferon (IFN) signaling suppresses VZV growth, and stimulator of interferon genes (STING) plays an important role in anti-VZV responses by regulating type I IFN signaling. VZV-encoded proteins are shown to inhibit STING-mediated activation of the IFN-ß promoter. However, the mechanisms by which VZV regulates STING-mediated signaling pathways are largely unknown. In this study, we demonstrate that the transmembrane protein encoded by VZV open reading frame (ORF) 39 suppresses STING-mediated IFN-ß production by interacting with STING. In IFN-ß promoter reporter assays, ORF39 protein (ORF39p) inhibited STING-mediated activation of the IFN-ß promoter. ORF39p interacted with STING in co-transfection assays, and this interaction was comparable to that of STING dimerization. The cytoplasmic N-terminal 73 amino acids region of ORF39P was not necessary for ORF39 binding and suppression of STING-mediated IFN-ß activation. ORF39p also formed a complex containing both STING and TBK1. A recombinant VZV expressing HA-tagged ORF39 was produced using bacmid mutagenesis and showed similar growth to its parent virus. During HA-ORF39 virus infection, the expression level of STING was markedly reduced, and HA-ORF39 interacted with STING. Moreover, HA-ORF39 also colocalized with glycoprotein K (encoded by ORF5) and STING at the Golgi during virus infection. Our results demonstrate that the transmembrane protein ORF39p of VZV plays a role in evading the type I IFN responses by suppressing STING-mediated activation of the IFN-ß promoter.


Asunto(s)
Herpes Zóster , Interferón beta , Proteínas de la Membrana , Humanos , Herpesvirus Humano 3/genética , Interferón beta/genética , Interferón beta/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal
2.
Antibodies (Basel) ; 8(3)2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31544848

RESUMEN

Since its first report in the Middle East in 2012, the Middle East respiratory syndrome-coronavirus (MERS-CoV) has become a global concern due to the high morbidity and mortality of individuals infected with the virus. Although the majority of MERS-CoV cases have been reported in Saudi Arabia, the overall risk in areas outside the Middle East remains significant as inside Saudi Arabia. Additional pandemics of MERS-CoV are expected, and thus novel tools and reagents for therapy and diagnosis are urgently needed. Here, we used phage display to develop novel monoclonal antibodies (mAbs) that target MERS-CoV. A human Fab phage display library was panned against the S2 subunit of the MERS-CoV spike protein (MERS-S2P), yielding three unique Fabs (S2A3, S2A6, and S2D5). The Fabs had moderate apparent affinities (Half maximal effective concentration (EC50 = 123-421 nM) for MERS-S2P, showed no cross-reactivity to spike proteins from other CoVs, and were non-aggregating and thermostable (Tm = 61.5-80.4 °C). Reformatting the Fabs into IgGs (Immunoglobulin Gs) greatly increased their apparent affinities (KD = 0.17-1.2 nM), presumably due to the effects of avidity. These apparent affinities were notably higher than that of a previously reported anti-MERS-CoV S2 reference mAb (KD = 8.7 nM). Furthermore, two of the three mAbs (S2A3 and S2D5) bound only MERS-CoV (Erasmus Medical Center (EMC)) and not other CoVs, reflecting their high binding specificity. However, the mAbs lacked MERS-CoV neutralizing activity. Given their high affinity, specificity, and desirable stabilities, we anticipate that these anti-MERS-CoV mAbs would be suitable reagents for developing antibody-based diagnostics in laboratory or hospital settings for point-of-care testing.

3.
J Microbiol ; 56(6): 441-448, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29858833

RESUMEN

Live attenuated vaccine strains have been developed for Varicella-Zoster virus (VZV). Compared to clinically isolated strains, the vaccine strains contain several non-synonymous mutations in open reading frames (ORFs) 0, 6, 31, 39, 55, 62, and 64. In particular, ORF62, encoding an immediate-early (IE) 62 protein that acts as a transactivator for viral gene expression, contains six non-synonymous mutations, but whether these mutations affect transactivation activity of IE62 is not understood. In this study, we investigated the role of non-synonymous vaccine-type mutations (M99T, S628G, R958G, V1197A, I1260V, and L1275S) of IE62 in Suduvax, a vaccine strain isolated in Korea, for transactivation activity. In reporter assays, Suduvax IE62 showed 2- to 4-fold lower transactivation activity toward ORF4, ORF28, ORF29, and ORF68 promoters than wild-type IE62. Introduction of individual M99T, S628G, R958G, or V1197A/I1260V/L1275S mutations into wild-type IE62 did not affect transactivation activity. However, the combination of M99T within the N-terminal Sp transcription factor binding region and V1197A/I1260V/L1275S within the C-terminal serine-enriched acidic domain (SEAD) significantly reduced the transactivation activity of IE62. The M99T/V1197A/I1260V/L1275S mutant IE62 did not show considerable alterations in intracellular distribution and Sp3 binding compared to wild-type IE62, suggesting that other alteration(s) may be responsible for the reduced transactivation activity. Collectively, our results suggest that acquisition of mutations in both Met 99 and the SEAD of IE62 is responsible for the reduced transactivation activity found in IE62 of the VZV vaccine strains and contributes to attenuation of the virus.


Asunto(s)
Herpesvirus Humano 3/genética , Vacunas contra Herpesvirus/genética , Vacunas contra Herpesvirus/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Mutación/genética , Transactivadores/genética , Transactivadores/metabolismo , Activación Transcripcional , Vacunas Atenuadas/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Línea Celular Tumoral , ADN Viral , Regulación Viral de la Expresión Génica , Genes Virales , Células HEK293 , Humanos , Sistemas de Lectura Abierta/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , República de Corea , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda