Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Metab Eng ; 84: 180-190, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969164

RESUMEN

Glutathione is a tripeptide of excellent value in the pharmaceutical, food, and cosmetic industries that is currently produced during yeast fermentation. In this case, glutathione accumulates intracellularly, which hinders high production. Here, we engineered Escherichia coli for the efficient production of glutathione. A total of 4.3 g/L glutathione was produced by overexpressing gshA and gshB, which encode cysteine glutamate ligase and glutathione synthetase, respectively, and most of the glutathione was excreted into the culture medium. Further improvements were achieved by inhibiting degradation (Δggt and ΔpepT); deleting gor (Δgor), which encodes glutathione oxide reductase; attenuating glutathione uptake (ΔyliABCD); and enhancing cysteine production (PompF-cysE). The engineered strain KG06 produced 19.6 g/L glutathione after 48 h of fed-batch fermentation with continuous addition of ammonium sulfate as the sulfur source. We also found that continuous feeding of glycine had a crucial role for effective glutathione production. The results of metabolic flux and metabolomic analyses suggested that the conversion of O-acetylserine to cysteine is the rate-limiting step in glutathione production by KG06. The use of sodium thiosulfate largely overcame this limitation, increasing the glutathione titer to 22.0 g/L, which is, to our knowledge, the highest titer reported to date in the literature. This study is the first report of glutathione fermentation without adding cysteine in E. coli. Our findings provide a great potential of E. coli fermentation process for the industrial production of glutathione.

2.
Pediatr Int ; 65(1): e15494, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36740922

RESUMEN

BACKGROUND: Early treatment may improve the prognosis of acute encephalopathy (AE). However, methods for early diagnosis have not yet been established. In this paper, we examined methods for the early diagnosis of AE. METHODS: We extracted data on patients with febrile status epilepticus from the electronic medical records in our department between March 2016 and April 2021. Among these, 79 patients who underwent continuous electroencephalography (cEEG) were included in this study. Patients who exhibited psychomotor retardation or abnormal brain magnetic resonance imaging findings were assigned to Group E (n = 20), and the remaining patients were the control group (Group C, n = 59). The following tests were compared retrospectively between these two groups on admission: cEEG, serum hepatic function tests, and blood coagulation tests. RESULTS: The percentage of patients who exhibited high-amplitude slow waves or flat waves on cEEG at the time of admission was statistically significantly higher in Group E than in Group C (p < 0.01). Moreover, the percentage of patients whose high-amplitude slow waves or flat brain waves on admission disappeared within 6 h after an initial episode of convulsion was statistically significantly lower in Group E than in Group C (p < 0.01). Furthermore, all the items in the coagulation and the hepatic function tests were statistically significantly different in Group E from those in Group C (p < 0.05). CONCLUSION: These results showed that cEEG together with hepatic function and coagulation tests may be useful for the differential diagnosis of AE.


Asunto(s)
Encefalopatías , Estado Epiléptico , Humanos , Estudios Retrospectivos , Encefalopatías/diagnóstico , Convulsiones/diagnóstico , Estado Epiléptico/diagnóstico , Electroencefalografía/métodos
3.
Biomacromolecules ; 22(6): 2718-2728, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34081446

RESUMEN

Modifying the side chain of poly(meth)acrylate with moieties originating from biocompatible polymers can be an effective method for developing novel blood-compatible polymers. Inspired by biocompatible poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx), four water-soluble poly(tertiary amide acylate) analogues bearing a pendant tertiary amide were synthesized. The results of hemolysis and cell viability tests showed that all the poly(tertiary amide acylate) analogues were compatible with red blood cells, HeLa cells, and normal human dermal fibroblasts as PMeOx or PEtOx. Among the four poly(tertiary amide acylate) analogues, poly[2-(N-methylpropionamido)ethyl acrylate] (PPEA) and poly[2-(N-ethylacetamido)ethyl acrylate] (PEAE) showed thermosensitivity in aqueous solution; especially, PPEA (10 mg mL-1) exhibited a lower critical solution temperature of 37 °C. Water-insoluble copolymers were prepared to investigate the possibility of applying these synthesized polymers as blood-compatible coatings. The poly[n-butyl methacrylate70-co-2-(N-methylacetamido)ethyl methacrylate30] (coPAEM) coatings significantly suppressed plasma protein adsorption, denaturation degree of adsorbed fibrinogen, and platelet adhesion. Intermediate water (IW), whose content can generally indicate the blood compatibility of polymers, was found in all hydrated homopolymers and copolymers by differential scanning calorimetry. The present work demonstrated that the tertiary amide moiety in the side chain of poly(meth)acrylate was an effective contributor to blood compatibility and IW.


Asunto(s)
Amidas , Materiales Biocompatibles , Acrilatos , Células HeLa , Humanos , Oxazoles , Polímeros , Agua
4.
Invest New Drugs ; 37(1): 109-117, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29995287

RESUMEN

Resminostat is an oral hydroxamate inhibitor of class I, IIb, and IV histone deacetylases. S-1 is widely used to treat biliary tract cancer and pancreatic cancer in Japan. We performed a phase I study of resminostat combined with S-1 as second-line or later therapy in Japanese patients with biliary tract or pancreatic cancer. A total of 27 patients were enrolled. We determined the optimal regimen for resminostat/S-1 therapy in part 1, and investigated its safety and efficacy in part 2. In part 1, 17 patients were enrolled. One DLT (anorexia and stomatitis, respectively) occurred with each of regimens 2 and 3. In part 2, an additional 10 patients received regimen 3, which was selected in part 1. Regimen 3 was resminostat (200 mg/day on Days 1 to 5 and Days 8 to 12: 5 days on/2 days off) plus S-1 (80-120 mg/day according to body surface area on Days 1 to 14) repeated every 21 days. A total of 16 patients (13 with biliary tract cancer and 3 with pancreatic cancer) received regimen 3 and it was well tolerated. The most frequent treatment-related adverse events were thrombocytopenia and anorexia (11 patients each, 69%). The disease control rate was 81.3% (84.6% for biliary tract cancer and 66.7% for pancreatic cancer, respectively). Median progression-free survival was 3.1 months (5.5 and 2.3 months), while median overall survival was 8.8 months (10.2 and 4.7 months). In conclusion, regimen 3 was well tolerated by patients with pre-treated biliary tract or pancreatic cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Sistema Biliar/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/química , Neoplasias Pancreáticas/tratamiento farmacológico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias del Sistema Biliar/enzimología , Neoplasias del Sistema Biliar/patología , Combinación de Medicamentos , Femenino , Estudios de Seguimiento , Humanos , Ácidos Hidroxámicos/administración & dosificación , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Ácido Oxónico/administración & dosificación , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Pronóstico , Sulfonamidas/administración & dosificación , Tegafur/administración & dosificación , Distribución Tisular
5.
Phys Rev Lett ; 123(9): 097002, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31524460

RESUMEN

In contrast to elementary Majorana particles, emergent Majorana fermions (MFs) in condensed-matter systems may have electromagnetic multipoles. We developed a general theory of magnetic multipoles for helical MFs on time-reversal-invariant superconductors. The results show that the multipole response is governed by crystal symmetry, and that a one-to-one correspondence exists between the symmetry of Cooper pairs and the representation of magnetic multipoles under crystal symmetry. The latter property provides a way to identify unconventional pairing symmetry via the magnetic response of helical MFs. We also find that most helical MFs exhibit a magnetic-dipole response, but those on superconductors with spin-3/2 electrons may display a magnetic-octupole response in leading order, which uniquely characterizes high-spin superconductors. Detection of such an octupole response provides direct evidence of high-spin superconductivity, such as in half-Heusler superconductors.

6.
Pediatr Res ; 81(6): 926-931, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28099425

RESUMEN

BACKGROUND: BTB and CNC homology 1 (Bach1) is a transcriptional repressor of heme oxygenase (HO)-1. The effects of Bach1 disruption on hyperoxic lung injury in newborn mice have not been determined. We aimed to investigate the role of Bach1 in the newborns exposed to hyperoxia. METHODS: Bach1-/- and WT newborn mice were exposed to 21% or 95% oxygen for 4 d and were then allowed to recover in room air. Lung histology was assessed and lung Bach1, HO-1, interleukin (IL)-6, and monocyte chemoattractant protein (MCP)-1 mRNA levels were evaluated using RT-PCR. Lung inflammatory cytokine levels were determined using cytometric bead arrays. RESULTS: After 10 d recovery from neonatal hyperoxia, Bach1-/- mice showed improved lung alveolarization compared with WT. HO-1, IL-6, and MCP-1 mRNA levels and IL-6 and MCP-1 protein levels were significantly increased in the Bach1-/- lungs exposed to neonatal hyperoxia. Although an increase in apoptosis was observed in the Bach1-/- and WT lungs after neonatal hyperoxia, there were no differences in apoptosis between these groups. CONCLUSION: Bach1-/- newborn mice were well-recovered from hyperoxia-induced lung injury. This effect is likely achieved by the antioxidant/anti-inflammatory activity of HO-1 or by the transient overexpression of proinflammatory cytokines.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Inflamación/genética , Lesión Pulmonar/genética , Regulación hacia Arriba , Animales , Animales Recién Nacidos , Hemo-Oxigenasa 1/genética , Interleucina-6/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN/genética
7.
Biomacromolecules ; 18(12): 4214-4223, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29131605

RESUMEN

A series of polyacrylates with different n-alkyl side chain lengths (1 to 6, and 12 carbons) and a ω-methoxy terminal group (poly(ω-methoxyalkyl acrylate): PMCxA) were prepared to study their nonthrombogenicity using human platelet adhesion, micro bicinchoninic acid (micro BCA) protein assay, and enzyme-linked immunosorbent assay (ELISA) tests. In all cases, human platelet adhesion was suppressed on the PMCxA-coated substrates, and the number of human platelets adhered to the PMC3A (poly(3-methoxypropyl acrylate))-coated surface was comparable to that of commercialized nonthrombogenic coating agent poly(2-methoxyethyl acrylate) (PMEA, equal to PMC2A). The amount of protein adsorbed onto the PMCxA was investigated by micro BCA using bovine serum albumin (BSA) and human fibrinogen (hFbn), revealing that PMC3A exhibited significantly high resistance to nonspecific BSA adsorption. Additionally, the amount of hFbn adsorbed onto the PMC3A was suppressed to the same extent as PMEA. The exposure degree of platelet adhesion sites in adsorbed hFbn was evaluated using an ELISA test, and the degree on the PMCxA with three to six methylene carbons was comparable to the PMEA. The hydration water structure in the hydrated PMCxA was also characterized using differential scanning calorimetry (DSC). The amount of intermediate water, which is the hydration water molecules that moderately interact with the polymer matrix, was maximum in the PMEA with two methylene run lengths, whereas the amount decreased by increasing the number of methyelnes in the side chain. The amount of adsorbed protein increased with a decrease in the amount of intermediate water, suggesting that the protein adsorption amount is tunable by simply changing the number of methylene carbons in the side chain. The present study revealed that poly(ω-methoxyalkyl acrylate)s are useful for blood-contacting medical devices, and PMC3A is the best mode of PMCxA to apply as an antiprotein adsorption coating agent.


Asunto(s)
Resinas Acrílicas/química , Polímeros/química , Quinolinas/química , Acrilatos/química , Adsorción , Materiales Biocompatibles/química , Plaquetas/efectos de los fármacos , Rastreo Diferencial de Calorimetría/métodos , Fibrinógeno/química , Humanos , Adhesividad Plaquetaria/efectos de los fármacos , Albúmina Sérica Bovina/química
8.
Biomacromolecules ; 18(5): 1609-1616, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28391697

RESUMEN

A poly(vinyl acetate) derivative, poly(3-methoxypropionic acid vinyl ester) (PMePVE), was synthesized to develop a new candidate for blood compatible polymers. The monomer MePVE was synthesized by a simple two-step reaction, and then the MePVE was polymerized via free radical polymerization to obtain PMePVE. Human platelet adhesion tests were performed to evaluate the thrombogenicity, and the platelet adhesion was suppressed on the PMePVE-coated substrate. To determine the expression of the nonthrombogenicity of the PMePVE, the plasma protein adsorption and a conformationally altered state of fibrinogen were analyzed by a microBCA assay and enzyme-linked immunosorbent assay. The adsorption and denaturation of the plasma proteins were inhibited on the PMePVE; thus, PMePVE exhibited blood compatibility. A distinctive hydration water structure in the nonthrombogenic polymer, intermediate water (IW), was observed in the hydrated PMePVE by differential scanning calorimetry analysis. The nonthrombogenicity of PMePVE is considered to be brought about by the presence of IW.


Asunto(s)
Materiales Biocompatibles/síntesis química , Plaquetas/efectos de los fármacos , Polivinilos/química , Propionatos/síntesis química , Materiales Biocompatibles/efectos adversos , Fibrinógeno/química , Fibrinógeno/metabolismo , Humanos , Polimerizacion , Propionatos/efectos adversos , Propionatos/química , Unión Proteica , Desnaturalización Proteica
9.
Biochim Biophys Acta ; 1841(9): 1264-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24832487

RESUMEN

In eukaryotic cells, phospholipids are synthesized exclusively in the defined organelles specific for each phospholipid species. To explain the reason for this compartmental specificity in the case of phosphatidylcholine (PC) synthesis, we constructed and characterized a Saccharomyces cerevisiae strain that lacked endogenous phosphatidylethanolamine (PE) methyltransferases but had a recombinant PE methyltransferase from Acetobacter aceti, which was fused with a mitochondrial targeting signal from yeast Pet100p and a 3×HA epitope tag. This fusion protein, which we named as mitopmt, was determined to be localized to the mitochondria by fluorescence microscopy and subcellular fractionation. The expression of mitopmt suppressed the choline auxotrophy of a double deletion mutant of PEM1 and PEM2 (pem1Δpem2Δ) and enabled it to synthesize PC in the absence of choline. This growth suppression was observed even if the Kennedy pathway was inactivated by the repression of PCT1 encoding CTP:phosphocholine cytidylyltransferase, suggesting that PC synthesized in the mitochondria is distributed to other organelles without going through the salvage pathway. The pem1Δpem2Δ strain deleted for PSD1 encoding the mitochondrial phosphatidylserine decarboxylase was able to grow because of the expression of mitopmt in the presence of ethanolamine, implying that PE from other organelles, probably from the ER, was converted to PC by mitopmt. These results suggest that PC could move out of the mitochondria, and raise the possibility that its movement is not under strict directional limitations.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Fosfatidilcolinas/biosíntesis , Fosfatidiletanolamina N-Metiltransferasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetobacter/química , Acetobacter/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/deficiencia , Carboxiliasas/genética , Colina , Citidililtransferasa de Colina-Fosfato/antagonistas & inhibidores , Citidililtransferasa de Colina-Fosfato/genética , Citidililtransferasa de Colina-Fosfato/metabolismo , Etanolamina/metabolismo , Prueba de Complementación Genética , Isoenzimas/deficiencia , Isoenzimas/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Fosfatidiletanolamina N-Metiltransferasa/deficiencia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Transducción de Señal , Transgenes
10.
Phys Rev Lett ; 115(18): 187001, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26565490

RESUMEN

Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd_{3}As_{2}.

11.
ACS Appl Bio Mater ; 7(1): 306-314, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091496

RESUMEN

Isolating cancer cells from tissues and providing an appropriate culture environment are important for a better understanding of cancer behavior. Although various three-dimensional (3D) cell culture systems have been developed, techniques for collecting high-purity spheroids without strong stimulation are required. Herein, we report a 3D cell culture system for the isolation of cancer spheroids using enzymatically synthesized cellulose oligomers (COs) and demonstrate that this system isolates only cancer spheroids under coculture conditions with normal cells. CO suspensions in a serum-containing cell culture medium were prepared to suspend cells without settling. High-purity cancer spheroids could be separated by filtration without strong stimulation because the COs exhibited antibiofouling properties and a viscosity comparable to that of the culture medium. When human hepatocellular carcinoma (HepG2) cells, a model for cancer cells, were cultured in the CO suspensions, they proliferated clonally and efficiently with time. In addition, only developed cancer spheroids from HepG2 cells were collected in the presence of normal cells by using a mesh filter with an appropriate pore size. These results indicate that this approach has potential applications in basic cancer research and cancer drug screening.


Asunto(s)
Neoplasias Hepáticas , Esferoides Celulares , Humanos , Celulosa , Técnicas de Cocultivo , Células Hep G2
12.
Biol Methods Protoc ; 9(1): bpae044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962661

RESUMEN

Biosurfactants have remarkable characteristics, such as environmental friendliness, high safety, and excellent biodegradability. Surfactin is one of the best-known biosurfactants produced by Bacillus subtilis. Because the biosynthetic pathways of biosurfactants, such as surfactin, are complex, mutagenesis is a useful alternative to typical metabolic engineering approaches for developing high-yield strains. Therefore, there is a need for high-throughput and accurate screening methods for high-yield strains derived from mutant libraries. The blood agar lysis method, which takes advantage of the hemolytic activity of biosurfactants, is one way of determining their concentration. This method includes inoculating microbial cells onto blood-containing agar plates, and biosurfactant production is assessed based on the size of the hemolytic zone formed around each colony. Challenges with the blood agar lysis method include low experimental reproducibility and a lack of established protocols for high-throughput screening. Therefore, in this study, we investigated the effects of the inoculation procedure and media composition on the formation of hemolytic zones. We also developed a workflow to evaluate the number of colonies using robotics. The results revealed that by arranging colonies at appropriate intervals and measuring the areas of colonies and hemolytic rings using image analysis software, it was possible to accurately compare the hemolytic activity among several colonies. Although the use of the blood agar lysis method for screening is limited to surfactants exhibiting hemolytic activity, it is believed that by considering the insights gained from this study, it can contribute to the accurate screening of strains with high productivity.

13.
Anal Sci ; 39(6): 1015-1020, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36859695

RESUMEN

Polypropyleneimine (PPI) was examined as a transfection reagent comparing with most widely used polymer, polyethyleneimine (PEI). PPI had better responsiveness to the endosomal pH and showed more condensation ability of plasmid DNA than PEI. Although the cytotoxicity of PPI was somewhat higher than PEI, the transfection efficacy of PPI was comparable with PEI or higher than PEI in some cell line. Thus, PPI would be an alternative transfection reagent.


Asunto(s)
Polietileneimina , Polipropilenos , Indicadores y Reactivos , Transfección , Línea Celular , Plásmidos/genética , Polietileneimina/química
14.
Biochem Biophys Res Commun ; 417(1): 490-4, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22177957

RESUMEN

It is widely accepted that phosphatidylethanolamine (PE) is enriched in the cytosolic leaflet of the eukaryotic plasma membranes. To identify genes involved in the establishment and regulation of the asymmetric distribution of PE on the plasma membrane, we screened the deletion strain collection of the yeast Saccharomyces cerevisiae for hypersensitive mutants to the lantibiotic peptide Ro09-0198 (Ro) that specifically binds to PE on the cell surface and inhibits cellular growth. Deletion mutants of VPS51, VPS52, VPS53, and VPS54 encoding the components of Golgi-associated retrograde protein (GARP) complex, YPT6 encoding a Rab family small GTPase that functions with GARP complex, RIC1 and RGP1 encoding its guanine nucleotide exchange factor (GEF), and TLG2 encoding t-SNARE exhibited hypersensitivity to Ro. The mutants deleted for VPS51, VPS52, VPS53, and VPS54 were impaired in the uptake of fluorescently labeled PE. In addition, aberrant intracellular localization of the EGFP-tagged Dnf2p, the putative inward-directed phospholipid translocase (flippase) of the plasma membrane, was observed in the mutant defective in the GARP complex, Ypt6p, its GEF proteins, or Tlg2p. Our results suggest that the GARP complex is involved in the recycling of Dnf flippases.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Aparato de Golgi/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/genética , Membrana Celular/enzimología , Análisis Mutacional de ADN , Farmacorresistencia Fúngica , Eliminación de Gen , Aparato de Golgi/genética , Péptidos/farmacología , Péptidos Cíclicos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
ACS Biomater Sci Eng ; 8(10): 4547-4556, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36153975

RESUMEN

Blood-compatible and cell-adhering polymer materials are extremely useful for regenerative medicine and disease diagnosis. (Meth)acryl polymers with high hydrophilicity have been widely used in industries, and attempts to apply these polymers in the medical field are frequently reported. We focused on crosslinked polymer films prepared using bifunctional monomers, which are widely used as coating materials, and attempted to alter the cell adhesion behavior while maintaining blood compatibility by changing the chemical structure of the crosslinker. Four bifunctional monomers were studied, three of which were found to be blood-compatible polymers and to suppress platelet adhesion. The adhesion behavior of cancer cells to polymer films varied; moreover, the cancer model cells MCF-7 [EpCAM(+)] and MDA-MB-231 [EpCAM (-)], with different expression levels of epithelial cell adhesion molecule (EpCAM), showed distinct adhesion behavior for each material. We suggest that a combination of these materials has the potential to selectively capture and enrich highly metastatic cancer cells.


Asunto(s)
Células Neoplásicas Circulantes , Adhesión Celular , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Adhesividad Plaquetaria , Polímeros
16.
PLoS One ; 17(11): e0276219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36413535

RESUMEN

OBJECTIVE: Quadriceps weakness is considered the primary determinant of gait function after total knee arthroplasty (TKA). However, many patients have shown a gap in improvement trends between gait function and quadriceps strength in clinical situations. Factors other than quadriceps strength in the recovery of gait function after TKA may be essential factors. Because muscle power is a more influential determinant of gait function than muscle strength, the maximum knee extension velocity without external load may be a critical parameter of gait function in patients with TKA. This study aimed to identify the importance of knee extension velocity in determining the gait function early after TKA by comparing the quadriceps strength. METHODS: This prospective observational study was conducted in four acute care hospitals. Patients scheduled for unilateral TKA were recruited (n = 186; age, 75.9 ± 6.6 years; 43 males and 143 females). Knee extension velocity was defined as the angular velocity of knee extension without external load as quickly as possible in a seated position. Bilateral knee function (knee extension velocity and quadriceps strength), lateral knee function (pain and range of motion), and gait function (gait speed and Timed Up and Go test (TUG)) were evaluated before and at 2 and 3 weeks after TKA. RESULTS: Both bilateral knee extension velocities and bilateral quadriceps strengths were significantly correlated with gait function. The knee extension velocity on the operation side was the strongest predictor of gait function at all time points in multiple regression analysis. CONCLUSION: These findings identified knee extension velocity on the operation side to be a more influential determinant of gait function than impairments in quadriceps strength. Therefore, training that focuses on knee extension velocity may be recommended as part of the rehabilitation program in the early postoperative period following TKA. TRIAL REGISTRATION: UMIN Clinical Trials Registry (UMIN-CTR) UMIN000020036.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Masculino , Femenino , Humanos , Anciano , Anciano de 80 o más Años , Artroplastia de Reemplazo de Rodilla/rehabilitación , Equilibrio Postural , Estudios de Tiempo y Movimiento , Marcha/fisiología , Periodo Posoperatorio
17.
J Am Chem Soc ; 133(15): 5794-7, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21446673

RESUMEN

3-Substituted cis-cyclooctenes (3RCOEs, R = methyl, ethyl, hexyl, and phenyl) were synthesized and polymerized, and the polymers therefrom were hydrogenated to prepare model linear low density polyethylene (LLDPE) samples. The ring-opening metathesis polymerization (ROMP) of the 3RCOEs using Grubbs' catalyst proceeded in a regio- and stereoselective manner to afford polyoctenamers [poly(3RCOE)] exhibiting remarkably high head-to-tail regioregularity and high trans-stereoregularity. The overall selectivity increases with the increasing size of the R substituent. Hydrogenation of poly(3RCOE)s afforded precision LLDPEs with R substituents on every eighth backbone carbon.

18.
Acta Biomater ; 134: 313-324, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34332104

RESUMEN

Adhesion of cells on biomaterials plays an essential role in modulating cellular functions. Although hydration of biomaterials occurs under biological conditions, it is challenging to systematically evaluate the correlation of hydrated water content in biomaterials with the cell adhesion strength. In this report, we investigated the effect of bound water content on the adhesion strength of cells on poly(2-methoxyethyl acrylate) (PMEA) analogue substrates. Water-insoluble PMEA analogues were synthesized to fabricate substrates with a systemically controlled bound water content. To assess the surface properties of their substrates, contact angle measurement, atomic force microscopy (AFM), and fluorescence measurement were conducted. To reflect the effect of bound water of PMEA analogues, the relationship between the bound water content and cell adhesion behavior was evaluated under serum-free condition. From the single cell force spectrometry (SCFS) and microscopic analysis, it revealed that the increment of bound water content on the substrates decreased cell adhesion strength and cell spreading on the substrates. The bound water content exhibited a good correlation with adhesion strength, spreading area, circularity, and aspect ratio of cells. Our findings indicate that the bound water content could contribute to the development of a novel biomaterial and evaluation of cell behaviors on biomaterials. STATEMENT OF SIGNIFICANCE: For coordinating cell functions, such as growth, mobility, and differentiation, modulating the adhesion strength between cells and their environments is important. Although the hydration to biomaterials has been reported to be closely related to a antifouling property, the effect of hydration water on the cell adhesion behavior is not well understood. We present the first demonstration of essential relationship between cell adhesion strength and hydrated water on a biomaterials surface using the water-insoluble polymers with different hydrated water content. The results reveal that the hydrated water content of polymer substrates strong correlation with adhesion strength of cells. Collectively, the hydrated water content of the biomaterials will be a predominant factor affecting the cell adhesion strength and behavior.


Asunto(s)
Polímeros , Agua , Acrilatos , Materiales Biocompatibles , Adhesión Celular , Propiedades de Superficie
19.
Front Bioeng Biotechnol ; 9: 627082, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748082

RESUMEN

Polyhydroxyalkanoate (PHA) synthase is an enzyme that polymerizes the acyl group of hydroxyacyl-coenzyme A (CoA) substrates. Aeromonas caviae PHA synthase (PhaCAc) is an important biocatalyst for the synthesis of a useful PHA copolymer, poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)]. Previously, a PhaCAc mutant with double mutations in asparagine 149 (replaced by serine [N149S]) and aspartate 171 (replaced by glycine [D171G]) was generated to synthesize a 3HHx-rich P(3HB-co-3HHx) and was named PhaCAc NSDG. In this study, to further increase the 3HHx fraction in biosynthesized PHA, PhaCAc was engineered based on the three-dimensional structural information of PHA synthases. First, a homology model of PhaCAc was built to target the residues for site-directed mutagenesis. Three residues, namely tyrosine 318 (Y318), serine 389 (S389), and leucine 436 (L436), were predicted to be involved in substrate recognition by PhaCAc. These PhaCAc NSDG residues were replaced with other amino acids, and the resulting triple mutants were expressed in the engineered strain of Ralstonia eutropha for application in PHA biosynthesis from palm kernel oil. The S389T mutation allowed the synthesis of P(3HB-co-3HHx) with an increased 3HHx fraction without a significant reduction in PHA yield. Thus, a new workhorse enzyme was successfully engineered for the biosynthesis of a higher 3HHx-fraction polymer.

20.
ACS Biomater Sci Eng ; 7(6): 2383-2391, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33979126

RESUMEN

Hydration states of polymers are known to directly influence the adsorption of biomolecules. Particularly, intermediate water (IW) has been found able to prevent protein adsorption. Experimental studies have examined the IW content and nonthrombogenicity of poly(2-methoxyethyl acrylate) analogues with different side-chain spacings and lengths, which are HPx (x is the number of backbone carbons in a monomer) and PMCyA (y is the number of carbons in-between ester and ether oxygens of the side-chain) series, respectively. HPx was reported to possess more IW content but lower nonthrombogenicity compared to PMCyA with analogous composition. To understand the reason for the conflict, molecular dynamics simulations were conducted to elucidate the difference in the properties between the HPx and PMCyA. Simulation results showed that the presence of more methylene groups in the side chain more effectively prohibits water penetration in the polymer than those in the polymer backbone, causing a lower IW content in the PMCyA. At a high water content, the methoxy oxygen in the shorter side chain of the HPx cannot effectively bind water compared to that in the PMCyA side chain. HPx side chains may have more room to contact with molecules other than water (e.g., proteins), causing experimentally less nonthrombogenicity of HPx than that of PMCyA. In summary, theoretical simulations successfully explained the difference in the effects of side-chain spacing and length in atomistic scale.


Asunto(s)
Materiales Biocompatibles , Simulación de Dinámica Molecular , Acrilatos , Adsorción , Polímeros
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda