Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Nature ; 626(7998): 392-400, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086420

RESUMEN

An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-γ (IFNγ) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.


Asunto(s)
Linfocitos T CD8-positivos , Memoria Inmunológica , Células T de Memoria , Infecciones por Paramyxoviridae , Sistema Respiratorio , Animales , Ratones , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Inmunidad Colectiva/inmunología , Memoria Inmunológica/inmunología , Interferón gamma/inmunología , Células T de Memoria/inmunología , Paramyxoviridae/inmunología , Paramyxoviridae/fisiología , Infecciones por Paramyxoviridae/inmunología , Infecciones por Paramyxoviridae/prevención & control , Infecciones por Paramyxoviridae/transmisión , Infecciones por Paramyxoviridae/virología , Sistema Respiratorio/citología , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , Transcripción Genética , Humanos
2.
PLoS Pathog ; 20(4): e1012131, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626244

RESUMEN

Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.


Asunto(s)
Flujo Genético , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Porcinos , Infecciones por Orthomyxoviridae/virología , Enfermedades de los Porcinos/virología , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Variación Genética , Evolución Molecular , Selección Genética , Filogenia
3.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38158742

RESUMEN

Sequencing of viral infections has become increasingly common over the last decade. Deep sequencing data in particular have proven useful in characterizing the roles that genetic drift and natural selection play in shaping within-host viral populations. They have also been used to estimate transmission bottleneck sizes from identified donor-recipient pairs. These bottleneck sizes quantify the number of viral particles that establish genetic lineages in the recipient host and are important to estimate due to their impact on viral evolution. Current approaches for estimating bottleneck sizes exclusively consider the subset of viral sites that are observed as polymorphic in the donor individual. However, these approaches have the potential to substantially underestimate true transmission bottleneck sizes. Here, we present a new statistical approach for instead estimating bottleneck sizes using patterns of viral genetic variation that arise de novo within a recipient individual. Specifically, our approach makes use of the number of clonal viral variants observed in a transmission pair, defined as the number of viral sites that are monomorphic in both the donor and the recipient but carry different alleles. We first test our approach on a simulated dataset and then apply it to both influenza A virus sequence data and SARS-CoV-2 sequence data from identified transmission pairs. Our results confirm the existence of extremely tight transmission bottlenecks for these 2 respiratory viruses.


Asunto(s)
Flujo Genético , Virus de la Influenza A , Virus de la Influenza A/genética , Selección Genética , Variación Genética
4.
J Virol ; 98(1): e0161823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38174928

RESUMEN

The global evolution of SARS-CoV-2 depends in part upon the evolutionary dynamics within individual hosts with varying immune histories. To characterize the within-host evolution of acute SARS-CoV-2 infection, we sequenced saliva and nasal samples collected daily from vaccinated and unvaccinated individuals early during infection. We show that longitudinal sampling facilitates high-confidence genetic variant detection and reveals evolutionary dynamics missed by less-frequent sampling strategies. Within-host dynamics in both unvaccinated and vaccinated individuals appeared largely stochastic; however, in rare cases, minor genetic variants emerged to frequencies sufficient for forward transmission. Finally, we detected significant genetic compartmentalization of viral variants between saliva and nasal swab sample sites in many individuals. Altogether, these data provide a high-resolution profile of within-host SARS-CoV-2 evolutionary dynamics.IMPORTANCEWe detail the within-host evolutionary dynamics of SARS-CoV-2 during acute infection in 31 individuals using daily longitudinal sampling. We characterized patterns of mutational accumulation for unvaccinated and vaccinated individuals, and observed that temporal variant dynamics in both groups were largely stochastic. Comparison of paired nasal and saliva samples also revealed significant genetic compartmentalization between tissue environments in multiple individuals. Our results demonstrate how selection, genetic drift, and spatial compartmentalization all play important roles in shaping the within-host evolution of SARS-CoV-2 populations during acute infection.


Asunto(s)
Evolución Molecular , Flujo Genético , SARS-CoV-2 , Humanos , COVID-19/virología , Nariz/virología , Saliva/virología , SARS-CoV-2/genética , Masculino , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad
5.
Emerg Infect Dis ; 29(7): 1349-1356, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37347494

RESUMEN

The effect of norovirus dose on outcomes such as virus shedding and symptoms after initial infection is not well understood. We performed a secondary analysis of a human challenge study by using Bayesian mixed-effects models. As the dose increased from 4.8 to 4,800 reverse transcription PCR units, the total amount of shed virus in feces increased from 4.5 × 1011 to 3.4 × 1012 genomic equivalent copies; in vomit, virus increased from 6.4 × 105 to 3.0 × 107 genomic equivalent copies. Onset time of viral shedding in feces decreased from 1.4 to 0.8 days, and time of peak viral shedding decreased from 2.3 to 1.5 days. Time to symptom onset decreased from 1.5 to 0.8 days. One type of symptom score increased. An increase in norovirus dose was associated with more rapid shedding and symptom onset and possibly increased severity. However, the effect on virus load and shedding was inconclusive.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Humanos , Norovirus/genética , Teorema de Bayes , Cinética , Factores de Tiempo , Heces , Esparcimiento de Virus
6.
J Virol ; 96(4): e0183221, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34935439

RESUMEN

Segmentation of viral genomes provides the potential for genetic exchange within coinfected cells. However, for this potential to be realized, coinfecting genomes must mix during the viral life cycle. The efficiency of reassortment, in turn, dictates its potential to drive evolution. The opportunity for mixing within coinfected cells may vary greatly across virus families, such that the evolutionary implications of genome segmentation differ as a result of core features of the viral life cycle. To investigate the relationship between viral replication compartments and genetic exchange, we quantified reassortment in mammalian orthoreovirus (reovirus). Reoviruses carry a 10-segmented, double-stranded RNA genome, which is replicated within proteinaceous structures termed inclusion bodies. We hypothesized that inclusions impose a barrier to reassortment. We quantified reassortment between wild-type (wt) and variant (var) reoviruses that differ by one nucleotide per segment. Studies of wt/var systems in both T1L and T3D backgrounds revealed frequent reassortment without bias toward particular genotypes. However, reassortment was more efficient in the T3D serotype. Since T1L and T3D viruses exhibit different inclusion body morphologies, we tested the impact of this phenotype on reassortment. In both serotypes, reassortment levels did not differ by inclusion morphology. Reasoning that the merging of viral inclusions may be critical for genome mixing, we then tested the effect of blocking merging. Reassortment proceeded efficiently even under these conditions. Our findings indicate that reovirus reassortment is highly efficient despite the localization of many viral processes to inclusion bodies, and that the robustness of this genetic exchange is independent of inclusion body structure and fusion. IMPORTANCE Quantification of reassortment in diverse viral systems is critical to elucidate the implications of genome segmentation for viral evolution. In principle, genome segmentation offers a facile means of genetic exchange between coinfecting viruses. In practice, there may be physical barriers within the cell that limit the mixing of viral genomes. Here, we tested the hypothesis that localization of the various stages of the mammalian orthoreovirus life cycle within cytoplasmic inclusion bodies compartmentalizes viral replication and limits genetic exchange. Contrary to this hypothesis, our data indicate that reovirus reassortment occurs readily within coinfected cells and is not strongly affected by the structure or dynamics of viral inclusion bodies. We conclude that the potential for reassortment to contribute to reovirus evolution is high.


Asunto(s)
Orthoreovirus de los Mamíferos/genética , Virus Reordenados/genética , Animales , Línea Celular , Genoma Viral/genética , Genotipo , Cuerpos de Inclusión Viral/ultraestructura , Ratones , Microtúbulos/metabolismo , Serogrupo , Replicación Viral
7.
PLoS Pathog ; 17(8): e1009849, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34424945

RESUMEN

The emergence of divergent SARS-CoV-2 lineages has raised concern that novel variants eliciting immune escape or the ability to displace circulating lineages could emerge within individual hosts. Though growing evidence suggests that novel variants arise during prolonged infections, most infections are acute. Understanding how efficiently variants emerge and transmit among acutely-infected hosts is therefore critical for predicting the pace of long-term SARS-CoV-2 evolution. To characterize how within-host diversity is generated and propagated, we combine extensive laboratory and bioinformatic controls with metrics of within- and between-host diversity to 133 SARS-CoV-2 genomes from acutely-infected individuals. We find that within-host diversity is low and transmission bottlenecks are narrow, with very few viruses founding most infections. Within-host variants are rarely transmitted, even among individuals within the same household, and are rarely detected along phylogenetically linked infections in the broader community. These findings suggest that most variation generated within-host is lost during transmission.


Asunto(s)
COVID-19/virología , Variación Genética , SARS-CoV-2/genética , Enfermedad Aguda , COVID-19/transmisión , Evolución Molecular , Genoma Viral , Humanos , Filogenia , SARS-CoV-2/patogenicidad , Factores de Tiempo
8.
PLoS Pathog ; 17(2): e1009373, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33635912

RESUMEN

The evolutionary mechanisms by which SARS-CoV-2 viruses adapt to mammalian hosts and, potentially, undergo antigenic evolution depend on the ways genetic variation is generated and selected within and between individual hosts. Using domestic cats as a model, we show that SARS-CoV-2 consensus sequences remain largely unchanged over time within hosts, while dynamic sub-consensus diversity reveals processes of genetic drift and weak purifying selection. We further identify a notable variant at amino acid position 655 in Spike (H655Y), which was previously shown to confer escape from human monoclonal antibodies. This variant arises rapidly and persists at intermediate frequencies in index cats. It also becomes fixed following transmission in two of three pairs. These dynamics suggest this site may be under positive selection in this system and illustrate how a variant can quickly arise and become fixed in parallel across multiple transmission pairs. Transmission of SARS-CoV-2 in cats involved a narrow bottleneck, with new infections founded by fewer than ten viruses. In RNA virus evolution, stochastic processes like narrow transmission bottlenecks and genetic drift typically act to constrain the overall pace of adaptive evolution. Our data suggest that here, positive selection in index cats followed by a narrow transmission bottleneck may have instead accelerated the fixation of S H655Y, a potentially beneficial SARS-CoV-2 variant. Overall, our study suggests species- and context-specific adaptations are likely to continue to emerge. This underscores the importance of continued genomic surveillance for new SARS-CoV-2 variants as well as heightened scrutiny for signatures of SARS-CoV-2 positive selection in humans and mammalian model systems.


Asunto(s)
COVID-19/veterinaria , Enfermedades de los Gatos/virología , SARS-CoV-2/fisiología , Adaptación Biológica , Animales , Evolución Biológica , COVID-19/transmisión , COVID-19/virología , Gatos , Evolución Molecular , Variación Genética , Humanos , Filogenia , Selección Genética
9.
PLoS Pathog ; 16(10): e1008974, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33064776

RESUMEN

During viral infection, the numbers of virions infecting individual cells can vary significantly over time and space. The functional consequences of this variation in cellular multiplicity of infection (MOI) remain poorly understood. Here, we rigorously quantify the phenotypic consequences of cellular MOI during influenza A virus (IAV) infection over a single round of replication in terms of cell death rates, viral output kinetics, interferon and antiviral effector gene transcription, and superinfection potential. By statistically fitting mathematical models to our data, we precisely define specific functional forms that quantitatively describe the modulation of these phenotypes by MOI at the single cell level. To determine the generality of these functional forms, we compare two distinct cell lines (MDCK cells and A549 cells), both infected with the H1N1 strain A/Puerto Rico/8/1934 (PR8). We find that a model assuming that infected cell death rates are independent of cellular MOI best fits the experimental data in both cell lines. We further observe that a model in which the rate and efficiency of virus production increase with cellular co-infection best fits our observations in MDCK cells, but not in A549 cells. In A549 cells, we also find that induction of type III interferon, but not type I interferon, is highly dependent on cellular MOI, especially at early timepoints. This finding identifies a role for cellular co-infection in shaping the innate immune response to IAV infection. Finally, we show that higher cellular MOI is associated with more potent superinfection exclusion, thus limiting the total number of virions capable of infecting a cell. Overall, this study suggests that the extent of cellular co-infection by influenza viruses may be a critical determinant of both viral production kinetics and cellular infection outcomes in a host cell type-dependent manner.


Asunto(s)
Coinfección/virología , Inmunidad Innata/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Interferón Tipo I/farmacología , Interferones/farmacología , Infecciones por Orthomyxoviridae/virología , Células A549 , Animales , Coinfección/inmunología , Coinfección/patología , Perros , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Gripe Humana/inmunología , Gripe Humana/patología , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Proteínas no Estructurales Virales , Replicación Viral , Interferón lambda
10.
PLoS Pathog ; 16(2): e1007968, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32059027

RESUMEN

Human cytomegalovirus (HCMV) infection is the leading non-genetic cause of congenital birth defects worldwide. While several studies have addressed the genetic composition of viral populations in newborns diagnosed with HCMV, little is known regarding mother-to-child viral transmission dynamics and how therapeutic interventions may impact within-host viral populations. Here, we investigate how preexisting CMV-specific antibodies shape the maternal viral population and intrauterine virus transmission. Specifically, we characterize the genetic composition of CMV populations in a monkey model of congenital CMV infection to examine the effects of passively-infused hyperimmune globulin (HIG) on viral population genetics in both maternal and fetal compartments. In this study, 11 seronegative, pregnant monkeys were challenged with rhesus CMV (RhCMV), including a group pretreated with a standard potency HIG preparation (n = 3), a group pretreated with a high-neutralizing potency HIG preparation (n = 3), and an untreated control group (n = 5). Targeted amplicon deep sequencing of RhCMV glycoprotein B and L genes revealed that one of the three strains present in the viral inoculum (UCD52) dominated maternal and fetal viral populations. We identified minor haplotypes of this strain and characterized their dynamics. Many of the identified haplotypes were consistently detected at multiple timepoints within sampled maternal tissues, as well as across tissue compartments, indicating haplotype persistence over time and transmission between maternal compartments. However, haplotype numbers and diversity levels were not appreciably different between control, standard-potency, and high-potency pretreatment groups. We found that while the presence of maternal antibodies reduced viral load and congenital infection, it had no apparent impact on intrahost viral genetic diversity at the investigated loci. Interestingly, some minor haplotypes present in fetal and maternal-fetal interface tissues were also identified as minor haplotypes in corresponding maternal tissues, providing evidence for a loose RhCMV mother-to-fetus transmission bottleneck even in the presence of preexisting antibodies.


Asunto(s)
Anticuerpos Antivirales/farmacología , Infecciones por Citomegalovirus , Citomegalovirus/metabolismo , Transmisión Vertical de Enfermedad Infecciosa , Complicaciones Infecciosas del Embarazo , Animales , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/patología , Femenino , Macaca mulatta , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Complicaciones Infecciosas del Embarazo/metabolismo , Complicaciones Infecciosas del Embarazo/patología
11.
Clin Infect Dis ; 72(5): e154-e157, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161424

RESUMEN

To assess the impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic on seasonal respiratory viruses, absolute case counts and viral reproductive rates from 2019-2020 were compared against previous seasons. Our findings suggest that the public health measures implemented to reduce SARS-CoV-2 transmission significantly reduced the transmission of other respiratory viruses.


Asunto(s)
COVID-19 , Virus , Humanos , Pandemias , SARS-CoV-2 , Estaciones del Año , Estados Unidos/epidemiología
12.
Clin Infect Dis ; 70(1): 152-161, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31257450

RESUMEN

We conducted a systematic review to describe the frequency of mild, atypical, and asymptomatic infection among household contacts of pertussis cases and to explore the published literature for evidence of asymptomatic transmission. We included studies that obtained and tested laboratory specimens from household contacts regardless of symptom presentation and reported the proportion of cases with typical, mild/atypical, or asymptomatic infection. After screening 6789 articles, we included 26 studies. Fourteen studies reported household contacts with mild/atypical pertussis. These comprised up to 46.2% of all contacts tested. Twenty-four studies reported asymptomatic contacts with laboratory-confirmed pertussis, comprising up to 55.6% of those tested. Seven studies presented evidence consistent with asymptomatic pertussis transmission between household contacts. Our results demonstrate a high prevalence of subclinical infection in household contacts of pertussis cases, which may play a substantial role in the ongoing transmission of disease. Our review reveals a gap in our understanding of pertussis transmission.


Asunto(s)
Tos Ferina , Infecciones Asintomáticas/epidemiología , Bordetella pertussis , Composición Familiar , Humanos , Lactante , Prevalencia , Tos Ferina/epidemiología
13.
Emerg Infect Dis ; 26(8): 1818-1825, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32687043

RESUMEN

Norovirus is the leading cause of acute gastroenteritis outbreaks in the United States. We estimated the basic (R0) and effective (Re) reproduction numbers for 7,094 norovirus outbreaks reported to the National Outbreak Reporting System (NORS) during 2009-2017 and used regression models to assess whether transmission varied by outbreak setting. The median R0 was 2.75 (interquartile range [IQR] 2.38-3.65), and median Re was 1.29 (IQR 1.12-1.74). Long-term care and assisted living facilities had an R0 of 3.35 (95% CI 3.26-3.45), but R0 did not differ substantially for outbreaks in other settings, except for outbreaks in schools, colleges, and universities, which had an R0 of 2.92 (95% CI 2.82-3.03). Seasonally, R0 was lowest (3.11 [95% CI 2.97-3.25]) in summer and peaked in fall and winter. Overall, we saw little variability in transmission across different outbreaks settings in the United States.


Asunto(s)
Infecciones por Caliciviridae , Enfermedades Transmitidas por los Alimentos , Gastroenteritis , Norovirus , Infecciones por Caliciviridae/epidemiología , Brotes de Enfermedades , Enfermedades Transmitidas por los Alimentos/epidemiología , Gastroenteritis/epidemiología , Humanos , Estaciones del Año , Estados Unidos/epidemiología
15.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626684

RESUMEN

The high degree of conservation of CD8 T cell epitopes of influenza A virus (IAV) may allow for the development of T cell-inducing vaccines that provide protection across different strains and subtypes. This conservation is not fully explained by functional constraint, since an additional mutation(s) can compensate for the replicative fitness loss of IAV escape variants. Here, we propose three additional mechanisms that contribute to the conservation of CD8 T cell epitopes of IAV. First, influenza-specific CD8 T cells may protect predominantly against severe pathology rather than infection and may have only a modest effect on transmission. Second, polymorphism of the human major histocompatibility complex class I (MHC-I) gene restricts the advantage of an escape variant to only a small fraction of the human population who carry the relevant MHC-I alleles. Finally, infection with CD8 T cell escape variants may result in a compensatory increase in the responses to other epitopes of IAV. We use a combination of population genetics and epidemiological models to examine how the interplay between these mechanisms affects the rate of invasion of IAV escape variants. We conclude that for a wide range of biologically reasonable parameters, the invasion of an escape variant virus will be slow, with a timescale of a decade or more. The results suggest T cell-inducing vaccines do not engender the rapid evolution of IAV. Finally, we identify key parameters whose measurement will allow for more accurate quantification of the long-term effectiveness and impact of universal T cell-inducing influenza vaccines.IMPORTANCE Universal influenza vaccines against the conserved epitopes of influenza A virus have been proposed to minimize the burden of seasonal outbreaks and prepare for the pandemics. However, it is not clear how rapidly T cell-inducing vaccines will select for viruses that escape these T cell responses. Our mathematical models explore the factors that contribute to the conservation of CD8 T cell epitopes and how rapidly the virus will evolve in response to T cell-inducing vaccines. We identify the key biological parameters to be measured and questions that need to be addressed in future studies.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Pandemias
16.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30518646

RESUMEN

Human cytomegalovirus (HCMV) is the most common congenital infection worldwide and a frequent cause of hearing loss and debilitating neurologic disease in newborn infants. Thus, a vaccine to prevent HCMV-associated congenital disease is a public health priority. One potential strategy is vaccination of women of child bearing age to prevent maternal HCMV acquisition during pregnancy. The glycoprotein B (gB) plus MF59 adjuvant subunit vaccine is the most efficacious tested clinically to date, demonstrating 50% protection against primary HCMV infection in a phase 2 clinical trial. Yet, the impact of gB/MF59-elicited immune responses on the population of viruses acquired by trial participants has not been assessed. In this analysis, we employed quantitative PCR as well as multiple sequencing methodologies to interrogate the magnitude and genetic composition of HCMV populations infecting gB/MF59 vaccinees and placebo recipients. We identified several differences between the viral dynamics in acutely infected vaccinees and placebo recipients. First, viral load was reduced in the saliva of gB vaccinees, though not in whole blood, vaginal fluid, or urine. Additionally, we observed possible anatomic compartmentalization of gB variants in the majority of vaccinees compared to only a single placebo recipient. Finally, we observed reduced acquisition of genetically related gB1, gB2, and gB4 genotype "supergroup" HCMV variants among vaccine recipients, suggesting that the gB1 genotype vaccine construct may have elicited partial protection against HCMV viruses with antigenically similar gB sequences. These findings suggest that gB immunization had a measurable impact on viral intrahost population dynamics and support future analysis of a larger cohort.IMPORTANCE Though not a household name like Zika virus, human cytomegalovirus (HCMV) causes permanent neurologic disability in one newborn child every hour in the United States, which is more than that for Down syndrome, fetal alcohol syndrome, and neural tube defects combined. There are currently no established effective measures to prevent viral transmission to the infant following HCMV infection of a pregnant mother. However, the glycoprotein B (gB)/MF59 vaccine, which aims to prevent pregnant women from acquiring HCMV, is the most successful HCMV vaccine tested clinically to date. Here, we used viral DNA isolated from patients enrolled in a gB vaccine trial who acquired HCMV and identified several impacts that this vaccine had on the size, distribution, and composition of the in vivo viral population. These results have increased our understanding of why the gB/MF59 vaccine was partially efficacious, and such investigations will inform future rational design of a vaccine to prevent congenital HCMV.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra Citomegalovirus/inmunología , Citomegalovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Adyuvantes Inmunológicos , Sangre/virología , Células Cultivadas , Citomegalovirus/clasificación , Citomegalovirus/genética , Femenino , Humanos , Embarazo , Epitelio Pigmentado de la Retina/citología , Saliva/virología , Seroconversión , Orina/virología , Vacunación , Vacunas de Subunidad/inmunología , Carga Viral/inmunología
17.
PLoS Pathog ; 13(2): e1006203, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28170438

RESUMEN

We characterise the evolutionary dynamics of influenza infection described by viral sequence data collected from two challenge studies conducted in human hosts. Viral sequence data were collected at regular intervals from infected hosts. Changes in the sequence data observed across time show that the within-host evolution of the virus was driven by the reversion of variants acquired during previous passaging of the virus. Treatment of some patients with oseltamivir on the first day of infection did not lead to the emergence of drug resistance variants in patients. Using an evolutionary model, we inferred the effective rate of reassortment between viral segments, measuring the extent to which randomly chosen viruses within the host exchange genetic material. We find strong evidence that the rate of effective reassortment is low, such that genetic associations between polymorphic loci in different segments are preserved during the course of an infection in a manner not compatible with epistasis. Combining our evidence with that of previous studies we suggest that spatial heterogeneity in the viral population may reduce the extent to which reassortment is observed. Our results do not contradict previous findings of high rates of viral reassortment in vitro and in small animal studies, but indicate that in human hosts the effective rate of reassortment may be substantially more limited.


Asunto(s)
Gripe Humana/virología , Modelos Genéticos , Orthomyxoviridae/genética , Humanos , Selección Genética
18.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28468874

RESUMEN

The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors.IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent advances in sequencing technology have enabled bottleneck size estimation from pathogen genetic data, although there is not yet a consistency in the statistical methods used. Here, we introduce a new approach to infer the bottleneck size that accounts for variant identification protocols and noise during pathogen replication. We show that failing to account for these factors leads to an underestimation of bottleneck sizes. We apply this method to an existing data set of human influenza virus infections, showing that transmission is governed by a loose, but highly variable, transmission bottleneck whose size is positively associated with the severity of infection of the donor. Beyond advancing our understanding of influenza virus transmission, we hope that this work will provide a standardized statistical approach for bottleneck size estimation for viral pathogens.


Asunto(s)
Variación Genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Gripe Humana/transmisión , Gripe Humana/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Virus de la Influenza A/aislamiento & purificación
19.
J Virol ; 90(24): 11247-11258, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27707932

RESUMEN

Knowledge of influenza virus evolution at the point of transmission and at the intrahost level remains limited, particularly for human hosts. Here, we analyze a unique viral data set of next-generation sequencing (NGS) samples generated from a human influenza challenge study wherein 17 healthy subjects were inoculated with cell- and egg-passaged virus. Nasal wash samples collected from 7 of these subjects were successfully deep sequenced. From these, we characterized changes in the subjects' viral populations during infection and identified differences between the virus in these samples and the viral stock used to inoculate the subjects. We first calculated pairwise genetic distances between the subjects' nasal wash samples, the viral stock, and the influenza virus A/Wisconsin/67/2005 (H3N2) reference strain used to generate the stock virus. These distances revealed that considerable viral evolution occurred at various points in the human challenge study. Further quantitative analyses indicated that (i) the viral stock contained genetic variants that originated and likely were selected for during the passaging process, (ii) direct intranasal inoculation with the viral stock resulted in a selective bottleneck that reduced nonsynonymous genetic diversity in the viral hemagglutinin and nucleoprotein, and (iii) intrahost viral evolution continued over the course of infection. These intrahost evolutionary dynamics were dominated by purifying selection. Our findings indicate that rapid viral evolution can occur during acute influenza infection in otherwise healthy human hosts when the founding population size of the virus is large, as is the case with direct intranasal inoculation. IMPORTANCE: Influenza viruses circulating among humans are known to rapidly evolve over time. However, little is known about how influenza virus evolves across single transmission events and over the course of a single infection. To address these issues, we analyze influenza virus sequences from a human challenge experiment that initiated infection with a cell- and egg-passaged viral stock, which appeared to have adapted during its preparation. We find that the subjects' viral populations differ genetically from the viral stock, with subjects' viral populations having lower representation of the amino-acid-changing variants that arose during viral preparation. We also find that most of the viral evolution occurring over single infections is characterized by further decreases in the frequencies of these amino-acid-changing variants and that only limited intrahost genetic diversification through new mutations is apparent. Our findings indicate that influenza virus populations can undergo rapid genetic changes during acute human infections.


Asunto(s)
Variación Genética , Genoma Viral , Subtipo H3N2 del Virus de la Influenza A/genética , ARN Viral/genética , Animales , Pollos , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Gripe Humana/virología , Modelos Genéticos , Selección Genética , Cigoto/virología
20.
PLoS Comput Biol ; 12(11): e1005194, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27855153

RESUMEN

Dengue is a vector-borne viral disease of humans that endemically circulates in many tropical and subtropical regions worldwide. Infection with dengue can result in a range of disease outcomes. A considerable amount of research has sought to improve our understanding of this variation in disease outcomes and to identify predictors of severe disease. Contributing to this research, patterns of viral load in dengue infected patients have been quantified, with analyses indicating that peak viral load levels, rates of viral load decline, and time to peak viremia are useful predictors of severe disease. Here, we take a complementary approach to understanding patterns of clinical manifestation and inter-individual variation in viral load dynamics. Specifically, we statistically fit mathematical within-host models of dengue to individual-level viral load data to test virological and immunological hypotheses explaining inter-individual variation in dengue viral load. We choose between alternative models using model selection criteria to determine which hypotheses are best supported by the data. We first show that the cellular immune response plays an important role in regulating viral load in secondary dengue infections. We then provide statistical support for the process of antibody-dependent enhancement (but not original antigenic sin) in the development of severe disease in secondary dengue infections. Finally, we show statistical support for serotype-specific differences in viral infectivity rates, with infectivity rates of dengue serotypes 2 and 3 exceeding those of serotype 1. These results contribute to our understanding of dengue viral load patterns and their relationship to the development of severe dengue disease. They further have implications for understanding how dengue transmissibility may depend on the immune status of infected individuals and the identity of the infecting serotype.


Asunto(s)
Virus del Dengue/aislamiento & purificación , Virus del Dengue/fisiología , Dengue/epidemiología , Dengue/virología , Modelos Estadísticos , Carga Viral/estadística & datos numéricos , Adolescente , Adulto , Simulación por Computador , Dengue/diagnóstico , Virus del Dengue/clasificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Reproducibilidad de los Resultados , Factores de Riesgo , Sensibilidad y Especificidad , Especificidad de la Especie , Vietnam/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda