Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Ann Rheum Dis ; 83(4): 488-498, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38123919

RESUMEN

OBJECTIVES: Cytotoxic T cells and natural killer (NK) cells are central effector cells in cancer and infections. Their effector response is regulated by activating and inhibitory receptors. The regulation of these cells in systemic autoimmune diseases such as systemic sclerosis (SSc) is less defined. METHODS: We conducted ex vivo analysis of affected skin and blood samples from 4 SSc patient cohorts (a total of 165 SSc vs 80 healthy individuals) using single-cell transcriptomics, flow cytometry and multiplex immunofluorescence staining. We further analysed the effects of costimulatory modulation in functional assays, and in a severely affected SSc patient who was treated on compassionate use with a novel anti-CD3/CD7 immunotoxin treatment. RESULTS: Here, we show that SSc-affected skin contains elevated numbers of proliferating T cells, cytotoxic T cells and NK cells. These cells selectively express the costimulatory molecule CD7 in association with cytotoxic, proinflammatory and profibrotic genes, especially in recent-onset and severe disease. We demonstrate that CD7 regulates the cytolytic activity of T cells and NK cells and that selective depletion of CD7+ cells prevents cytotoxic cell-induced fibroblast contraction and inhibits their profibrotic phenotype. Finally, anti-CD3/CD7 directed depletive treatment eliminated CD7+ skin cells and stabilised disease manifestations in a severely affected SSc patient. CONCLUSION: Together, the findings imply costimulatory molecules as key regulators of cytotoxicity-driven pathology in systemic autoimmune disease, yielding CD7 as a novel target for selective depletion of pathogenic cells.


Asunto(s)
Esclerodermia Sistémica , Linfocitos T , Humanos , Antígenos CD7/metabolismo , Células Asesinas Naturales
2.
Artículo en Inglés | MEDLINE | ID: mdl-38552313

RESUMEN

OBJECTIVES: Systemic sclerosis (SSc) is characterized by multiple clinical manifestations. Vasculopathy is a main disease hallmark and ranges in severity from an exacerbated Raynaud phenomenon to pulmonary arterial hypertension (PAH). The potential involvement of immune system in SSc associated vascular abnormalities is not clear. Here, we set out to study SSc-related immune parameters and determine whether and which peripheral T cell subsets associate with vascular severity in SSc patients. METHODS: Peripheral blood and clinical data were collected from 30 SSc patients, 5 patients with idiopathic pulmonary arterial hypertension (IPAH) and 15 age and sex-matched healthy donors (HD). In this cross-sectional cohort SSc patients with PAH (n = 15) were matched for their age, sex and medication with SSc patients with no signs of PAH (n = 15). Lymphocyte subsets were quantified by multi-colour flow cytometry. RESULTS: SSc patients exhibited elevated percentages of T peripheral helper cells (Tph), CD4+GZMB+ T cells and decreased levels of Th1 cells compared with HD. Increased presence of both CD4+ and CD8+ exhausted-like (CD28-) T cells, characterized by raised cytokine and cytotoxic signature, was also observed in SSc compared with HD blood. Furthermore, IL-4 expressing CD4+CD8+ T cells were significantly increased in SSc peripheral blood. Interestingly, the presence of PAH in SSc was accompanied by a distinct T helper profile, characterized by raised percentages of Th17 and Tph cells. CONCLUSION: SSc patients with severe vasculopathy (presence of PAH) exhibited a distinct T cell profile, suggesting for a potential role of auto-immune inflammation in SSc vascular complications.

3.
Osteoarthritis Cartilage ; 31(11): 1481-1490, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37652257

RESUMEN

OBJECTIVE: Transforming growth factor-ß (TGF-ß) signaling via SMAD2/3 is crucial to control cartilage homeostasis. However, TGF-ß can also have detrimental effects by signaling via SMAD1/5/9 and thereby contribute to diseases like osteoarthritis (OA). In this study, we aimed to block TGF-ß-induced SMAD1/5/9 signaling in primary human OA chondrocytes, while maintaining functional SMAD2/3 signaling. DESIGN: Human OA chondrocytes were pre-incubated with different concentrations of ALK4/5/7 kinase inhibitor SB-505124 before stimulation with TGF-ß. Changes in SMAD C-terminal phosphorylation were analyzed using Western blot and response genes were measured with quantitative Polymerase Chain Reaction. To further explore the consequences of our ability to separate pathways, we investigated TGF-ß-induced chondrocyte hypertrophy. RESULTS: Pre-incubation with 0.5 µM SB-505124, maintained ±50% of C-terminal SMAD2/3 phosphorylation and induction of JUNB and SERPINE1, but blocked SMAD1/5/9-C phosphorylation and expression of ID1 and ID3. Furthermore, TGF-ß, in levels comparable to those in the synovial fluid of OA patients, resulted in regulation of hypertrophic and dedifferentiation markers in OA chondrocytes; i.e. an increase in COL10, RUNX2, COL1A1, and VEGF and a decrease in ACAN expression. Interestingly, in a subgroup of OA chondrocyte donors, blocking only SMAD1/5/9 caused stronger inhibition on TGF-ß-induced RUNX2 than blocking both SMAD pathways. CONCLUSION: Our findings indicate that using low dose of SB-505124 we maintained functional SMAD2/3 signaling that blocks RUNX2 expression in a subgroup of OA patients. We are the first to show that SMAD2/3 and SMAD1/5/9 pathways can be separately modulated using low and high doses of SB-505124 and thereby split TGF-ß's detrimental from protective function in chondrocytes.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Condrocitos/metabolismo , Fosforilación , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Proteína Smad2/metabolismo
4.
Rheumatology (Oxford) ; 61(7): 2999-3009, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34450633

RESUMEN

OBJECTIVE: Activated synovial fibroblasts are key effector cells in RA. Selectively depleting these based upon their expression of fibroblast activation protein (FAP) is an attractive therapeutic approach. Here we introduce FAP imaging of inflamed joints using 68Ga-FAPI-04 in a RA patient, and aim to assess feasibility of anti-FAP targeted photodynamic therapy (FAP-tPDT) ex vivo using 28H1-IRDye700DX on RA synovial explants. METHODS: Remnant synovial tissue from RA patients was processed into 6 mm biopsies and, from several patients, into primary fibroblast cell cultures. Both were treated using FAP-tPDT. Cell viability was measured in fibroblast cultures and biopsies were evaluated for histological markers of cell damage. Selectivity of the effect of FAP-tPDT was assessed using flow cytometry on primary fibroblasts and co-cultured macrophages. Additionally, one RA patient intravenously received 68Ga-FAPI-04 and was scanned using PET/CT imaging. RESULTS: In the RA patient, FAPI-04 PET imaging showed high accumulation of the tracer in arthritic joints with very low background signal. In vitro, FAP-tPDT induced cell death in primary RA synovial fibroblasts in a light dose-dependent manner. An upregulation of cell damage markers was observed in the synovial biopsies after FAP-tPDT. No significant effects of FAP-tPDT were noted on macrophages after FAP-tPDT of neighbouring fibroblasts. CONCLUSION: In this study the feasibility of selective FAP-tPDT in synovium of rheumatoid arthritis patients ex vivo is demonstrated. Furthermore, this study provides the first indication that FAP-targeted PET/CT can be used to image arthritic joints, an important step towards application of FAP-tPDT as a targeted locoregional therapy for RA.


Asunto(s)
Artritis Reumatoide , Fotoquimioterapia , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Membrana Sinovial/metabolismo
5.
Ann Rheum Dis ; 80(6): 714-726, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33602797

RESUMEN

Animal models for inflammatory arthritides such as rheumatoid arthritis (RA) and psoriatic arthritis are widely accepted and frequently used to identify pathological mechanisms and validate novel therapeutic strategies. Unfortunately, many publications reporting on these animal studies lack detailed description and appropriate assessment of the distinct histopathological features of arthritis: joint inflammation, cartilage damage and bone erosion. Therefore, the European consortium BeTheCure, consisting of 38 academic and industrial partners from 15 countries, set as goal to standardise the histological evaluation of joint sections from animal models of inflammatory arthritis. The consensual approach of a task force including 16 academic and industrial scientists as well as laboratory technicians has resulted in the development of the Standardised Microscopic Arthritis Scoring of Histological sections ('SMASH') recommendations for a standardised processing and microscopic scoring of the characteristic histopathological features of arthritis, exemplified by four different rodent models for arthritis: murine collagen-induced arthritis, collagen-antibody-induced arthritis, human tumour necrosis factor transgenic Tg197 mice and rat pristane-induced arthritis, applicable to any other inflammatory arthritis model. Through standardisation, the SMASH recommendations are designed to improve and maximise the information derived from in vivo arthritis experiments and to promote reproducibility and transparent reporting on such studies. In this manuscript, we will discuss and provide recommendations for analysis of histological joint sections: identification of the regions of interest, sample preparation, staining procedures and quantitative scoring methods. In conclusion, awareness of the different features of the arthritis pathology in animal models of inflammatory arthritis is of utmost importance for reliable research outcome, and the standardised histological processing and scoring methods in these SMASH recommendations will help increase uniformity and reproducibility in preclinical research on inflammatory arthritis.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Artritis Experimental/patología , Artritis Reumatoide/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Ratas , Reproducibilidad de los Resultados
6.
Rheumatology (Oxford) ; 60(4): 1974-1983, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33197269

RESUMEN

OBJECTIVE: High levels of IL-22 are present in serum and synovial fluid of patients with RA. As both pro- and anti-inflammatory roles for IL-22 have been described in studies using animal models of RA, its exact function in arthritis remains poorly defined. With this study we aimed to further unravel the mechanism by which IL-22 exerts its effects and to decipher its therapeutic potential by overexpression of IL-22 either locally or systemically during experimental arthritis. METHODS: CIA was induced in DBA-1 mice by immunization and booster injection with type II collagen (col II). Before arthritis onset, IL-22 was overexpressed either locally by intra-articular injection or systemically by i.v. injection using an adenoviral vector and clinical arthritis was scored for a period of 10 days. Subsequently, joints were isolated for histological analysis of arthritis severity and mRNA and protein expression of various inflammatory mediators was determined in the synovium, spleen and serum. RESULTS: Local IL-22 overexpression did not alter arthritis pathology, whereas systemic overexpression of IL-22 potently reduced disease incidence, severity and pathology during CIA. Mice systemically overexpressing IL-22 showed strongly reduced serum cytokine levels of TNF-α and macrophage inflammatory protein 1α that correlated significantly with the enhanced expression of the negative immune regulator SOCS3 in the spleen. CONCLUSION: With this study, we revealed clear anti-inflammatory effects of systemic IL-22 overexpression during CIA. Additionally, we are the first to show that the protective effect of systemic IL-22 during experimental arthritis is likely orchestrated via upregulation of the negative regulator SOCS3.


Asunto(s)
Artritis Experimental/terapia , Interleucinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Experimental/patología , Modelos Animales de Enfermedad , Femenino , Articulaciones/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína 3 Supresora de la Señalización de Citocinas/inmunología , Interleucina-22
7.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34360888

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-ß (TGF-ß) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-ß signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1ß and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-ß signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1ß was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.


Asunto(s)
Condrocitos/metabolismo , Condrocitos/patología , Osteoartritis/metabolismo , Transducción de Señal/genética , Proteína Smad2/química , Proteína Smad2/metabolismo , Proteína smad3/química , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Adulto , Animales , Bovinos , Línea Celular Tumoral , Humanos , Hipertrofia/metabolismo , Inflamación/metabolismo , Interleucina-1beta/farmacología , Osteoartritis/genética , Osteoartritis/patología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Dominios Proteicos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Proteína Smad2/genética , Proteína smad3/genética , Membrana Sinovial/metabolismo , Transfección , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/farmacología
8.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884484

RESUMEN

Systemic sclerosis (SSc) is a rare, severe, auto-immune disease characterized by inflammation, vasculopathy and fibrosis. Activated (myo)fibroblasts are crucial drivers of this fibrosis. By exploiting their expression of fibroblast activation protein (FAP) to perform targeted photodynamic therapy (tPDT), we can locoregionally deplete these pathogenic cells. In this study, we explored the use of FAP-tPDT in primary skin fibroblasts from SSc patients, both in 2D and 3D cultures. Method: The FAP targeting antibody 28H1 was conjugated with the photosensitizer IRDye700DX. Primary skin fibroblasts were obtained from lesional skin biopsies of SSc patients via spontaneous outgrowth and subsequently cultured on plastic or collagen type I. For 2D FAP-tPDT, cells were incubated in buffer with or without the antibody-photosensitizer construct, washed after 4 h and exposed to λ = 689 nm light. Cell viability was measured using CellTiter Glo®®. For 3D FAP-tPDT, cells were seeded in collagen plugs and underwent the same treatment procedure. Contraction of the plugs was followed over time to determine myofibroblast activity. Results: FAP-tPDT resulted in antibody-dose dependent cytotoxicity in primary skin fibroblasts upon light exposure. Cells not exposed to light or incubated with an irrelevant antibody-photosensitizer construct did not show this response. FAP-tPDT fully prevented contraction of collagen plugs seeded with primary SSc fibroblasts. Even incubation with a very low dose of antibody (0.4 nM) inhibited contraction in 2 out of 3 donors. Conclusions: Here we have shown, for the first time, the potential of FAP-tPDT for the treatment of fibrosis in SSc skin.


Asunto(s)
Endopeptidasas/administración & dosificación , Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibrosis/prevención & control , Proteínas de la Membrana/administración & dosificación , Miofibroblastos/efectos de los fármacos , Fotoquimioterapia/métodos , Esclerodermia Sistémica/tratamiento farmacológico , Colágeno Tipo I/metabolismo , Fibroblastos/patología , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Miofibroblastos/patología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología
9.
Rheumatology (Oxford) ; 59(12): 3952-3960, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32734285

RESUMEN

OBJECTIVE: In RA, synovial fibroblasts become activated. These cells express fibroblast activation protein (FAP) and contribute to the pathogenesis by producing cytokines, chemokines and proteases. Selective depletion in inflamed joints could therefore constitute a viable treatment option. To this end, we developed and tested a new therapeutic strategy based on the selective destruction of FAP-positive cells by targeted photodynamic therapy (tPDT) using the anti-FAP antibody 28H1 coupled to the photosensitizer IRDye700DX. METHODS: After conjugation of IRDye700DX to 28H1, the immunoreactive binding and specificity of the conjugate were determined. Subsequently, tPDT efficiency was established in vitro using a 3T3 cell line stably transfected with FAP. The biodistribution of [111In]In-DTPA-28H1 with and without IRDye700DX was assessed in healthy C57BL/6N mice and in C57BL/6N mice with antigen-induced arthritis. The potential of FAP-tPDT to induce targeted damage was determined ex vivo by treating knee joints from C57BL/6N mice with antigen-induced arthritis 24 h after injection of the conjugate. Finally, the effect of FAP-tPDT on arthritis development was determined in mice with collagen-induced arthritis. RESULTS: 28H1-700DX was able to efficiently induce FAP-specific cell death in vitro. Accumulation of the anti-FAP antibody in arthritic knee joints was not affected by conjugation with the photosensitizer. Arthritis development was moderately delayed in mice with collagen-induced arthritis after FAP-tPDT. CONCLUSION: Here we demonstrate the feasibility of tPDT to selectively target and kill FAP-positive fibroblasts in vitro and modulate arthritis in vivo using a mouse model of RA. This approach may have therapeutic potential in (refractory) arthritis.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Fotoquimioterapia/métodos , Células 3T3/efectos de los fármacos , Animales , Femenino , Indoles/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Compuestos de Organosilicio/uso terapéutico
10.
Rheumatology (Oxford) ; 58(3): 536-546, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30508140

RESUMEN

OBJECTIVE: To investigate the role of AXL, a member of the anti-inflammatory TYRO3, AXL MER (TAM) receptor family, in arthritis. METHODS: KRN serum transfer arthritis was induced in Axl-/- and wild-type mice. Knee and ankle joints were scored macro- and microscopically. Synovial gene and protein expression of Axl was determined in naïve and TGF-ß1-overexpressing joints. AXL expression was determined in M1-like or M2-like macrophages and RA synovium. Human macrophages, fibroblasts and synovial micromasses were stimulated with TGF-ß1 or the AXL inhibitor R428. RESULTS: Ankle joints of Axl-/- mice showed exacerbated arthritis pathology, whereas no effect of Axl gene deletion was observed on gonarthritis pathology. To explain this spatial difference, we examined the synovium of naïve mice. In contrast to the knee, the ankle synovial cells prominently expressed AXL. Moreover, the M2-like macrophage phenotype was the dominant cell type in the naïve ankle joint. Human M2-like macrophages expressed higher levels of AXL and blocking AXL increased their inflammatory response. In the murine ankle synovium, gene expression of Tgfb1 was increased and Tgb1 correlated with Axl. Moreover, TGFB1 and AXL expression also correlated in human RA synovium. In human macrophages and synovial micromasses, TGF-ß1 enhanced AXL expression. Moreover, TGF-ß1 overexpression in naïve murine knee joints induced synovial AXL expression. CONCLUSION: Differences in synovial AXL expression are in accordance with the observation that AXL dampens arthritis in ankle, but not in knee joints. We provide evidence that the local differences in AXL expression could be due to TGF-ß1, and suggest similar pathways operate in RA synovium.


Asunto(s)
Artritis Experimental/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Membrana Sinovial/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Articulación del Tobillo/metabolismo , Artritis Experimental/genética , Fibroblastos/metabolismo , Humanos , Articulación de la Rodilla/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Tirosina Quinasa del Receptor Axl
11.
Clin Exp Rheumatol ; 37(6): 983-993, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31074720

RESUMEN

OBJECTIVES: In this study, we used hypercholesterolaemic apolipoprotein E-deficient (Apoe-/-) mice to investigate LDL/oxLDL effect on synovial inflammation and cartilage destruction during antigen-induced arthritis (AIA). Further, as macrophage FcγRs are crucial to immune complex-mediated AIA, we investigated in vitro the effects of high cholesterol levels on the expression of FcγRs on macrophages. METHODS: AIA was induced by intra-articular injection of mBSA into knee joints of immunised Apoe-/- and wild type (WT) control mice. Joint swelling was measured by uptake of 99mTc pertechnetate (99mTc). Joint inflammation and cartilage destruction were assessed by histology. Anti-mBSA IgGs were measured by ELISA and specific T-cell response by lymphocyte stimulation test. Upon oxLDL stimulation of WT macrophages, protein levels of FcγRs were measured by flow cytometry. RESULTS: Local induction of AIA resulted in less joint swelling, synovial infiltrate and exudate in the joint cavity in Apoe-/- mice compared to WT controls, even though both their humoral and adaptive immune response were comparable. Whereas Apoe deficiency alone did not affect macrophage expression of FcγRs, oxLDL sharply reduced the protein levels of activating FcγRs, crucial in mediating cartilage damage. In agreement with the reduced inflammation in Apoe-/- mice, we observed decreased MMP activity and destruction in the articular cartilage. CONCLUSIONS: Taken together, our findings suggest that high levels of LDL/oxLDL during inflammation, dampen the initiation and chronicity of joint inflammation and cartilage destruction in AIA by regulating macrophage FcγR expression.


Asunto(s)
Artritis Experimental , Cartílago Articular , LDL-Colesterol/sangre , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Experimental/patología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de IgG
12.
Mediators Inflamm ; 2019: 5689465, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31780864

RESUMEN

Specialized proresolving mediators (SPRM), which arise from n-3 long-chain polyunsaturated fatty acids (n-3FA), promote resolution of inflammation and may help to prevent progression of an acute inflammatory response into chronic inflammation in patients with arthritis. Thus, this study is aimed at determining whether systemic RvE1 treatment reduces arthritis onset and severity in murine collagen-induced arthritis (CIA) and spontaneous cytokine production by human rheumatoid arthritis (RA) synovial explants. 10-week-old DBA1/J male mice were subjected to CIA and treated systemically with 0.1 µg RvE1, 1 µg RvE1, 5 mg/kg anti-TNF (positive control group), PBS (negative control group), or with a combination of 1 µg of RvE1 plus 5 mg/kg anti-TNF using prophylactic or therapeutic strategies. After CIA immunization, mice were treated twice a week by RvE1 or anti-TNF for 10 days. Arthritis development was assessed by visual scoring of paw swelling and histology of ankle joints. Moreover, human RA synovial explants were incubated with 1 nM, 10 nM, or 100 nM of RvE1, and cytokine levels (IL-1ß, IL-6, IL-8, IL-10, INF-γ, and TNF-α) were measured using Luminex bead array. CIA triggered significant inflammation in the synovial cavity, proteoglycan loss, and cartilage and bone destruction in the ankle joints of mice. Prophylactic and therapeutic RvE1 regimens did not ameliorate CIA incidence and severity. Anti-TNF treatment significantly abrogated signs of joint inflammation, bone erosion, and proteoglycan depletion, but additional RvE1 treatment did not further reduce the anti-TNF-mediated suppression of the disease. Treatment with different concentrations of RvE1 did not decrease the expression of proinflammatory cytokines in human RA synovial explants in the studied conditions. Collectively, our findings demonstrated that RvE1 treatment was not an effective approach to treat CIA in DBA1/J mice in both prophylactic and therapeutic strategies. Furthermore, no effects were noticed when human synovial explants were incubated with different concentrations of RvE1.


Asunto(s)
Artritis Experimental/sangre , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/sangre , Artritis Reumatoide/tratamiento farmacológico , Citocinas/sangre , Ácido Eicosapentaenoico/análogos & derivados , Animales , Ácido Eicosapentaenoico/uso terapéutico , Interleucina-10/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , Interleucina-8/sangre , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos DBA , Estudios Prospectivos , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/sangre
13.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31540277

RESUMEN

The association between rheumatoid arthritis (RA) and periodontal disease (PD) has been the focus of numerous investigations driven by their common pathological features. RA is an autoimmune disease characterized by chronic inflammation, the production of anti-citrullinated proteins antibodies (ACPA) leading to synovial joint inflammation and destruction. PD is a chronic inflammatory condition associated with a dysbiotic microbial biofilm affecting the supporting tissues around the teeth leading to the destruction of mineralized and non-mineralized connective tissues. Chronic inflammation associated with both RA and PD is similar in the predominant adaptive immune phenotype, in the imbalance between pro- and anti-inflammatory cytokines and in the role of smoking and genetic background as risk factors. Structural damage that occurs in consequence of chronic inflammation is the ultimate cause of loss of function and disability observed with the progression of RA and PD. Interestingly, the periodontal pathogen Porphyromonas gingivalis has been implicated in the generation of ACPA in RA patients, suggesting a direct biological intersection between PD and RA. However, more studies are warranted to confirm this link, elucidate potential mechanisms involved, and ascertain temporal associations between RA and PD. This review is mainly focused on recent clinical and translational research intends to discuss and provide an overview of the relationship between RA and PD, exploring the similarities in the immune-pathological aspects and the possible mechanisms linking the development and progression of both diseases. In addition, the current available treatments targeting both RA and PD were revised.


Asunto(s)
Anticuerpos Antiproteína Citrulinada/metabolismo , Artritis Reumatoide/inmunología , Periodontitis/microbiología , Citocinas/metabolismo , Progresión de la Enfermedad , Disbiosis/inmunología , Disbiosis/microbiología , Regulación de la Expresión Génica , Humanos , Periodontitis/inmunología , Porphyromonas gingivalis/inmunología
14.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067826

RESUMEN

The temporomandibular joint (TMJ), which differs anatomically and biochemically from hyaline cartilage-covered joints, is an under-recognized joint in arthritic disease, even though TMJ damage can have deleterious effects on physical appearance, pain and function. Here, we analyzed the effect of IL-1ß, a cytokine highly expressed in arthritic joints, on TMJ fibrocartilage-derived cells, and we investigated the modulatory effect of mechanical loading on IL-1ß-induced expression of catabolic enzymes. TMJ cartilage degradation was analyzed in 8-11-week-old mice deficient for IL-1 receptor antagonist (IL-1RA-/-) and wild-type controls. Cells were isolated from the juvenile porcine condyle, fossa, and disc, grown in agarose gels, and subjected to IL-1ß (0.1-10 ng/mL) for 6 or 24 h. Expression of catabolic enzymes (ADAMTS and MMPs) was quantified by RT-qPCR and immunohistochemistry. Porcine condylar cells were stimulated with IL-1ß for 12 h with IL-1ß, followed by 8 h of 6% dynamic mechanical (tensile) strain, and gene expression of MMPs was quantified. Early signs of condylar cartilage damage were apparent in IL-1RA-/- mice. In porcine cells, IL-1ß strongly increased expression of the aggrecanases ADAMTS4 and ADAMTS5 by fibrochondrocytes from the fossa (13-fold and 7-fold) and enhanced the number of MMP-13 protein-expressing condylar cells (8-fold). Mechanical loading significantly lowered (3-fold) IL-1ß-induced MMP-13 gene expression by condylar fibrochondrocytes. IL-1ß induces TMJ condylar cartilage damage, possibly by enhancing MMP-13 production. Mechanical loading reduces IL-1ß-induced MMP-13 gene expression, suggesting that mechanical stimuli may prevent cartilage damage of the TMJ in arthritic patients.


Asunto(s)
Artritis Juvenil/metabolismo , Condrocitos/efectos de los fármacos , Interleucina-1beta/farmacología , Cóndilo Mandibular/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Articulación Temporomandibular/metabolismo , Proteína ADAMTS4 , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Animales , Células Cultivadas , Condrocitos/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/deficiencia , Interleucina-1beta/metabolismo , Cóndilo Mandibular/patología , Metaloproteinasa 13 de la Matriz/metabolismo , Ratones , Estrés Mecánico , Porcinos , Articulación Temporomandibular/patología
15.
J Cell Mol Med ; 22(9): 4399-4409, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29992753

RESUMEN

Endogenous nucleic acids and their receptors may be involved in the initiation of systemic autoimmune diseases including rheumatoid arthritis (RA). As the role of the DNA sensing Toll-like receptor (TLR) 9 in RA is unclear, we aimed to investigate its involvement in the pathogenesis of autoimmune arthritis using three different experimental models of RA. The data obtained revealed involvement of TLR9 in the T cell-dependent phase of inflammatory arthritis. In rats with pristane-induced arthritis (PIA), TLR9 inhibition before disease onset reduced arthritis significantly and almost completely abolished bone erosion. Accordingly, serum levels of IL-6, α-1-acid-glycoprotein and rheumatoid factor were reduced. Moreover, in TLR9-/- mice, streptococcal cell wall (SCW)-induced arthritis was reduced in the T cell-dependent phase, whereas T cell-independent serum-transfer arthritis was not affected. Remarkably, while TLR7 expression did not change during in vitro osteoclastogenesis, TLR9 expression was higher in precursor cells than in mature osteoclasts and partial inhibition of osteoclastogenesis was achieved only by the TLR9 antagonist. These results demonstrate a pivotal role for TLR9 in the T cell-dependent phases of inflammatory arthritis and additionally suggest some role during osteoclastogenesis. Hence, endogenous DNA seems to be crucially involved in the pathophysiology of inflammatory autoimmune arthritis.


Asunto(s)
Artritis Experimental/genética , Articulaciones/inmunología , Osteoclastos/inmunología , Osteogénesis/genética , Receptor Toll-Like 9/genética , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/inmunología , Artritis Experimental/patología , Cartílago Articular/inmunología , Cartílago Articular/patología , Pared Celular/química , Mezclas Complejas/administración & dosificación , Regulación de la Expresión Génica , Interleucina-6/genética , Interleucina-6/inmunología , Articulaciones/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Orosomucoide/genética , Orosomucoide/inmunología , Osteoclastos/patología , Ratas , Factor Reumatoide/genética , Factor Reumatoide/inmunología , Transducción de Señal , Streptococcus pyogenes/química , Terpenos/administración & dosificación , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/inmunología
16.
Ann Rheum Dis ; 77(10): 1490-1497, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29959183

RESUMEN

OBJECTIVES: Bone destruction in rheumatoid arthritis is mediated by osteoclasts (OC), which are derived from precursor cells of the myeloid lineage. The role of the two monocyte subsets, classical monocytes (expressing CD115, Ly6C and CCR2) and non-classical monocytes (which are CD115 positive, but low in Ly6C and CCR2), in serving as precursors for OC in arthritis is still elusive. METHODS: We investigated CCR2-/- mice, which lack circulating classical monocytes, crossed into hTNFtg mice for the extent of joint damage. We analysed monocyte subsets in hTNFtg and K/BxN serum transfer arthritis by flow cytometry. We sorted monocyte subsets and analysed their potential to differentiate into OC and their transcriptional response in response to RANKL by RNA sequencing. With these data, we performed a gene ontology enrichment analysis and gene set enrichment analysis. RESULTS: We show that in hTNFtg arthritis local bone erosion and OC generation are even enhanced in the absence of CCR2. We further show the numbers of non-classical monocytes in blood are elevated and are significantly correlated with histological signs of joint destruction. Sorted non-classical monocytes display an increased capacity to differentiate into OCs. This is associated with an increased expression of signal transduction components of RANK, most importantly TRAF6, leading to an increased responsiveness to RANKL. CONCLUSION: Therefore, non-classical monocytes are pivotal cells in arthritis tissue damage and a possible target for therapeutically intervention for the prevention of inflammatory joint damage.


Asunto(s)
Artritis Experimental/fisiopatología , Artritis Reumatoide/fisiopatología , Resorción Ósea/fisiopatología , Monocitos/fisiología , Osteoclastos/fisiología , Animales , Artritis Experimental/complicaciones , Artritis Reumatoide/complicaciones , Resorción Ósea/etiología , Diferenciación Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptores CCR2/metabolismo , Transducción de Señal/fisiología , Factor 6 Asociado a Receptor de TNF/metabolismo
17.
Rheumatology (Oxford) ; 57(4): 737-747, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361119

RESUMEN

Objectives: RA is a chronic autoimmune disease leading to progressive destruction of cartilage and bone. RA patients show elevated IL-22 levels and the amount of IL-22-producing Th cells positively correlates with the extent of erosive disease, suggesting a role for this cytokine in RA pathogenesis. The purpose of this study was to determine the feasibility of SPECT/CT imaging with 111In-labelled anti-fibroblast activation protein antibody (28H1) to monitor the therapeutic effect of neutralizing IL-22 in experimental arthritis. Methods: Mice (six mice/group) with CIA received anti-IL-22 or isotype control antibodies. To monitor therapeutic effects after treatment, SPECT/CT images were acquired 24 h after injection of 111In-28H1. Imaging results were compared with macroscopic, histologic and radiographic arthritis scores. Results: Neutralizing IL-22 before CIA onset effectively prevented arthritis development, reaching a disease incidence of only 50%, vs 100% in the control group. SPECT imaging showed significantly lower joint tracer uptake in mice treated early with anti-IL-22 antibodies compared with the control-treated group. Reduction of disease activity in those mice was confirmed by macroscopic, histological and radiographic pathology scores. However, when treatment was initiated in a later phase of CIA, progression of joint pathology could not be prevented. Conclusion: These findings suggest that IL-22 plays an important role in CIA development, and neutralizing this cytokine seems an attractive new strategy in RA treatment. Most importantly, SPECT/CT imaging with 111In-28H1 can be used to specifically monitor therapy responses, and is potentially more sensitive in disease monitoring than the gold standard method of macroscopic arthritis scoring.


Asunto(s)
Artritis/diagnóstico por imagen , Cartílago Articular/diagnóstico por imagen , Gelatinasas/genética , Regulación de la Expresión Génica , Interleucinas/genética , Proteínas de la Membrana/genética , ARN Mensajero/genética , Serina Endopeptidasas/genética , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Artritis/tratamiento farmacológico , Artritis/genética , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Colágeno/toxicidad , Modelos Animales de Enfermedad , Endopeptidasas , Gelatinasas/biosíntesis , Inmunohistoquímica , Interleucinas/biosíntesis , Masculino , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos DBA , Reacción en Cadena en Tiempo Real de la Polimerasa , Serina Endopeptidasas/biosíntesis , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Interleucina-22
18.
Cell Mol Life Sci ; 74(11): 2095-2106, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28124096

RESUMEN

MicroRNA (miR) are short non-coding RNA sequences of 19-24 nucleotides that regulate gene expression by binding to mRNA target sequences. The miR-29 family of miR (miR-29a, b-1, b-2 and c) is a key player in T-cell differentiation and effector function, with deficiency causing thymic involution and a more inflammatory T-cell profile. However, the relative roles of different miR-29 family members in these processes have not been dissected. We studied the immunological role of the individual members of the miR-29 family using mice deficient for miR-29a/b-1 or miR-29b-2/c in homeostasis and during collagen-induced arthritis. We found a definitive hierarchy of immunological function, with the strong phenotype of miR-29a-deficiency in thymic involution and T-cell activation being reduced or absent in miR-29c-deficient mice. Strikingly, despite elevating the Th1 and Th17 responses, loss of miR-29a conferred near-complete protection from collagen-induced arthritis (CIA), with profound defects in B-cell proliferation and antibody production. Our results identify the hierarchical structure of the miR-29 family in T-cell biology, and identify miR-29a in B cells as a potential therapeutic target in arthritis.


Asunto(s)
Artritis Experimental/inmunología , Artritis Experimental/patología , Linfocitos B/metabolismo , Centro Germinal/metabolismo , MicroARNs/metabolismo , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Linfocitos B/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Centro Germinal/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/metabolismo , Ratones , Ratones Noqueados , Poli I-C/farmacología , Timo/efectos de los fármacos , Timo/metabolismo
19.
Infect Immun ; 85(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28717032

RESUMEN

Serotype-specific protection against Streptococcus pneumoniae is an important limitation of the current polysaccharide-based vaccines. To prevent serotype replacement, reduce transmission, and limit the emergence of new variants, it is essential to induce broad protection and restrict pneumococcal colonization. In this study, we used a prototype vaccine formulation consisting of lipopolysaccharide (LPS)-detoxified outer membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the variable N terminus of PspA (α1α2) for intranasal vaccination, which induced strong Th17 immunity associated with a substantial reduction of pneumococcal colonization. Despite the variable nature of this protein, a common major histocompatibility complex class (MHC-II) epitope was identified, based on in silico prediction combined with ex vivo screening, and was essential for interleukin-17 A (IL-17A)-mediated cross-reactivity and associated with cross protection. Based on 1,352 PspA sequences derived from a pneumococcal carriage cohort, this OMV-based vaccine formulation containing a single α1α2 type was estimated to cover 19.1% of strains, illustrating the potential of Th17-mediated cross protection.


Asunto(s)
Protección Cruzada , Interleucina-17/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Salmonella typhimurium/química , Streptococcus pneumoniae/inmunología , Células Th17/inmunología , Administración Intranasal , Animales , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/aislamiento & purificación , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Simulación por Computador , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Epítopos/aislamiento & purificación , Genes MHC Clase II , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/inmunología , Interleucina-17/biosíntesis , Lipopolisacáridos/inmunología , Ratones , Infecciones Neumocócicas/inmunología , Vacunas Neumococicas/química , Salmonella typhimurium/inmunología , Vesículas Secretoras/química , Vesículas Secretoras/inmunología , Vacunación
20.
J Autoimmun ; 82: 74-84, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28545737

RESUMEN

Synovial fibroblasts are key cells orchestrating the inflammatory response in arthritis. Here we demonstrate that loss of miR-146a, a key epigenetic regulator of the innate immune response, leads to increased joint destruction in a TNF-driven model of arthritis by specifically regulating the behavior of synovial fibroblasts. Absence of miR-146a in synovial fibroblasts display a highly deregulated gene expression pattern and enhanced proliferation in vitro and in vivo. Deficiency of miR-146a induces deregulation of tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) in synovial fibroblasts, leading to increased proliferation. In addition, loss of miR-146a shifts the metabolic state of fibroblasts towards glycolysis and augments the ability of synovial fibroblasts to support the generation of osteoclasts by controlling the balance of osteoclastogenic regulatory factors receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Bone marrow transplantation experiments confirmed the importance of miR-146a in the radioresistant mesenchymal compartment for the control of arthritis severity, in particular for inflammatory joint destruction. This study therefore identifies microRNA-146a as an important local epigenetic regulator of the inflammatory response in arthritis. It is a central element of an anti-inflammatory feedback loop in resident synovial fibroblasts, who are orchestrating the inflammatory response in chronic arthritis. MiR-146a restricts their activation, thereby preventing excessive tissue damage during arthritis.


Asunto(s)
Artritis/genética , Artritis/metabolismo , Fibroblastos/metabolismo , Articulaciones/metabolismo , Articulaciones/patología , MicroARNs/genética , Animales , Artritis/patología , Artritis Experimental , Resorción Ósea/genética , Proliferación Celular , Modelos Animales de Enfermedad , Fibroblastos/patología , Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Interferencia de ARN , Membrana Sinovial/citología , Membrana Sinovial/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda