Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042807

RESUMEN

Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of ∼2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.


Asunto(s)
Biodiversidad , Evolución Biológica , Genómica/métodos , Animales , Evolución Molecular , Variación Genética/genética , Genoma/genética , Genómica/tendencias , Humanos , Filogenia
2.
J Dairy Sci ; 107(2): 1054-1067, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37769947

RESUMEN

Resilience can be defined as the capacity to maintain performance or bounce back to normal functioning after a perturbation, and studying fluctuations in daily feed intake may be an effective way to identify resilient dairy cows. Our goal was to develop new phenotypes based on daily dry matter intake (DMI) consistency in Holstein cows, estimate genetic parameters and genetic correlations with feed efficiency and milk yield consistency, and evaluate their relationships with production, longevity, health, and reproduction traits. Data consisted of 397,334 daily DMI records of 6,238 lactating Holstein cows collected from 2007 to 2022 at 6 research stations across the United States. Consistency phenotypes were calculated based on the deviations from expected daily DMI for individual cows during their respective feeding trials, which ranged from 27 to 151 d in duration. Expected values were derived from different models, including simple average, quadratic and cubic quantile regression with a 0.5 quantile, and locally estimated scatterplot smoothing (LOESS) regression with span parameters 0.5 and 0.7. We then calculated the log of variance (log-Var-DMI) of daily deviations for each model as the consistency phenotype. Consistency of milk yield was also calculated, as a reference, using the same methods (log-Var-Milk). Genetic parameters were estimated using an animal model, including lactation, days in milk and cohort as fixed effects, and animal as random effect. Relationships between log-Var-DMI and traits currently considered in the US national genetic evaluation were evaluated using Spearman's rank correlations between sires' breeding values. Heritability estimates for log-Var-DMI ranged from 0.11 ± 0.02 to 0.14 ± 0.02 across models. Different methods (simple average, quantile regressions, and LOESS regressions) used to calculate log-Var-DMI yielded very similar results, with genetic correlations ranging from 0.94 to 0.99. Estimated genetic correlations between log-Var-DMI and log-Var-Milk ranged from 0.51 to 0.62. Estimated genetic correlations between log-Var-DMI and feed efficiency ranged from 0.55 to 0.60 with secreted milk energy, from 0.59 to 0.63 with metabolic body weight, and from 0.26 to 0.31 with residual feed intake (RFI). Relationships between log-Var-DMI and the traits in the national genetic evaluation were moderate and positive correlations with milk yield (0.20 to 0.21), moderate and negative correlations with female fertility (-0.07 to -0.20), no significant correlations with health and longevity, and favorable correlations with feed efficiency (-0.23 to -0.25 with feed saved and 0.21 to 0.26 with RFI). We concluded that DMI consistency is heritable and may be an indicator of resilience. Cows with lower variation in the difference between actual and expected daily DMI (more consistency) may be more effective in maintaining performance in the face of challenges or perturbations, whereas cows with greater variation in observed versus expected daily DMI (less consistency) are less feed efficient and may be less resilient.


Asunto(s)
Lactancia , Leche , Humanos , Bovinos/genética , Femenino , Animales , Lactancia/genética , Leche/metabolismo , Ingestión de Alimentos/genética , Cruzamiento , Peso Corporal/genética , Alimentación Animal
3.
J Dairy Sci ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38754817

RESUMEN

Large data sets allow estimating feed required for individual milk components or body maintenance. Phenotypic regressions are useful for nutrition management, but genetic regressions are more useful in breeding programs. Dry matter intake (DMI) records from 8,513 lactations of 6,621 Holstein cows were predicted from phenotypes or genomic evaluations for milk components and body size traits. The mixed models also included days in milk, age-parity subclass, trial date, management group, and body weight change during 28- and 42-d feeding trials in mid-lactation. Phenotypic regressions of DMI on milk (0.014 ± 0.006), fat (3.06 ± 0.01), and protein (4.79 ± 0.25) were much less than corresponding genomic regressions (0.08 ± 0.03, 11.30 ± 0.47, and 9.35 ± 0.87) or sire genomic regressions multiplied by 2 (0.048 ± 0.04, 6.73 ± 0.94, and 4.98 ± 1.75). Thus, marginal feed costs as fractions of marginal milk revenue were higher from genetic than phenotypic regressions. According to the energy-corrected milk formula, fat production requires 69% more DMI than protein production. In the phenotypic regression, it was estimated that protein production requires 56% more DMI than fat. However, the genomic regression for the animal showed a difference of only 21% more DMI for protein compared with fat, while the sire genomic regressions indicated approximately 35% more DMI for fat than protein. Estimates of annual maintenance in kg DMI / kg body weight/lactation were similar from phenotypic regression (5.9 ± 0.14), genomic regression (5.8 ± 0.31), and sire genomic regression multiplied by 2 (5.3 ± 0.55) and are larger than those estimated by NASEM (2021) based on NEL equations. Multiple regressions on genomic evaluations for the 5 type traits in body weight composite (BWC) showed that strength was the type trait most associated with body weight and DMI, agreeing with the current BWC formula, whereas other traits were less useful predictors, especially for DMI. The Net Merit formula used to weight different genetic traits to achieve an economically optimal overall selection response was revised in 2021 to better account for these estimated regressions. To improve profitability, breeding programs should select smaller cows with negative residual feed intake that produce more milk, fat, and protein.

4.
J Dairy Sci ; 107(3): 1510-1522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37690718

RESUMEN

The Resilient Dairy Genome Project (RDGP) is an international large-scale applied research project that aims to generate genomic tools to breed more resilient dairy cows. In this context, improving feed efficiency and reducing greenhouse gases from dairy is a high priority. The inclusion of traits related to feed efficiency (e.g., dry matter intake [DMI]) or greenhouse gases (e.g., methane emissions [CH4]) relies on available genotypes as well as high quality phenotypes. Currently, 7 countries (i.e., Australia, Canada, Denmark, Germany, Spain, Switzerland, and United States) contribute with genotypes and phenotypes including DMI and CH4. However, combining data are challenging due to differences in recording protocols, measurement technology, genotyping, and animal management across sources. In this study, we provide an overview of how the RDGP partners address these issues to advance international collaboration to generate genomic tools for resilient dairy. Specifically, we describe the current state of the RDGP database, data collection protocols in each country, and the strategies used for managing the shared data. As of February 2022, the database contains 1,289,593 DMI records from 12,687 cows and 17,403 CH4 records from 3,093 cows and continues to grow as countries upload new data over the coming years. No strong genomic differentiation between the populations was identified in this study, which may be beneficial for eventual across-country genomic predictions. Moreover, our results reinforce the need to account for the heterogeneity in the DMI and CH4 phenotypes in genomic analysis.


Asunto(s)
Gases de Efecto Invernadero , Femenino , Animales , Bovinos , Genómica , Genotipo , Australia , Metano
5.
Mamm Genome ; 34(3): 418-436, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37460664

RESUMEN

Current genome sequencing technologies have made it possible to generate highly contiguous genome assemblies for non-model animal species. Despite advances in genome assembly methods, there is still room for improvement in the delineation of specific gene features in the genomes. Here we present genome visualization and annotation tools to support seven livestock species (bovine, chicken, goat, horse, pig, sheep, and water buffalo), available in a new resource called AgAnimalGenomes. In addition to supporting the manual refinement of gene models, these browsers provide visualization tracks for hundreds of RNAseq experiments, as well as data generated by the Functional Annotation of Animal Genomes (FAANG) Consortium. For species with predicted gene sets from both Ensembl and RefSeq, the browsers provide special tracks showing the thousands of protein-coding genes that disagree across the two gene sources, serving as a valuable resource to alert researchers to gene model issues that may affect data interpretation. We describe the data and search methods available in the new genome browsers and how to use the provided tools to edit and create new gene models.


Asunto(s)
Animales Domésticos , Bases de Datos Genéticas , Animales , Bovinos , Porcinos , Caballos/genética , Ovinos/genética , Animales Domésticos/genética , Anotación de Secuencia Molecular , Genoma/genética , Mapeo Cromosómico , Cabras/genética
6.
J Biol Chem ; 293(47): 18086-18098, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30228187

RESUMEN

Secreted proteins are important metabolic regulators in both healthy and disease states. Here, we sought to investigate the mechanism by which the secreted protein complement 1q-like-3 (C1ql3) regulates insulin secretion from pancreatic ß-cells, a key process affecting whole-body glucose metabolism. We found that C1ql3 predominantly inhibits exendin-4- and cAMP-stimulated insulin secretion from mouse and human islets. However, to a lesser extent, C1ql3 also reduced insulin secretion in response to KCl, the potassium channel blocker tolbutamide, and high glucose. Strikingly, C1ql3 did not affect insulin secretion stimulated by fatty acids, amino acids, or mitochondrial metabolites, either at low or submaximal glucose concentrations. Additionally, C1ql3 inhibited glucose-stimulated cAMP levels, and insulin secretion stimulated by exchange protein directly activated by cAMP-2 and protein kinase A. These results suggest that C1ql3 inhibits insulin secretion primarily by regulating cAMP signaling. The cell adhesion G protein-coupled receptor, brain angiogenesis inhibitor-3 (BAI3), is a C1ql3 receptor and is expressed in ß-cells and in mouse and human islets, but its function in ß-cells remained unknown. We found that siRNA-mediated Bai3 knockdown in INS1(832/13) cells increased glucose-stimulated insulin secretion. Furthermore, incubating the soluble C1ql3-binding fragment of the BAI3 protein completely blocked the inhibitory effects of C1ql3 on insulin secretion in response to cAMP. This suggests that BAI3 mediates the inhibitory effects of C1ql3 on insulin secretion from pancreatic ß-cells. These findings demonstrate a novel regulatory mechanism by which C1ql3/BAI3 signaling causes an impairment of insulin secretion from ß-cells, possibly contributing to the progression of type 2 diabetes in obesity.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adipoquinas , Animales , Línea Celular , Complemento C1q , Proteínas del Sistema Complemento/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Secreción de Insulina , Proteínas del Tejido Nervioso/genética , Ratas
7.
BMC Genomics ; 19(1): 126, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29415651

RESUMEN

BACKGROUND: The amount of intramuscular fat can influence the sensory characteristics and nutritional value of beef, thus the selection of animals with adequate fat deposition is important to the consumer. There is growing knowledge about the genes and pathways that control the biological processes involved in fat deposition in muscle. MicroRNAs (miRNAs) belong to a well-conserved class of non-coding small RNAs that modulate gene expression across a range of biological functions in animal development and physiology. The aim of this study was to identify differentially expressed (DE) miRNAs, regulatory candidate genes and co-expression networks related to intramuscular fat (IMF) deposition. To achieve this, we used mRNA and miRNA expression data from the Longissimus dorsi muscle of 30 Nelore steers with high (H) and low (L) genomic estimated breeding values (GEBV) for IMF deposition. RESULTS: Differential miRNA expression analysis between animals with extreme GEBV values for IMF identified six DE miRNAs (FDR 10%). Functional annotation of the target genes for these microRNAs indicated that the PPARs signaling pathway is involved with IMF deposition. Candidate regulatory genes such as SDHAF4, FBXO17, ALDOA and PKM were identified by partial correlation with information theory (PCIT), phenotypic impact factor (PIF) and regulatory impact factor (RIF) co-expression approaches from integrated miRNA-mRNA expression data. Two DE miRNAs (FDR 10%), bta-miR-143 and bta-miR-146b, which were upregulated in the Low IMF group, were correlated with regulatory candidate genes, which were functionally enriched for fatty acid oxidation GO terms. Co-expression patterns obtained by weighted correlation network analysis (WGCNA), which showed possible interaction and regulation between mRNAs and miRNAs, identified several modules related to immune system function, protein metabolism, energy metabolism and glucose catabolism according to in silico analysis performed herein. CONCLUSION: In this study, several genes and miRNAs were identified as candidate regulators of IMF by analyzing DE miRNAs using two different miRNA-mRNA co-expression network methods. This study contributes to the understanding of potential regulatory mechanisms of gene signaling networks involved in fat deposition processes measured in muscle. Glucose metabolism and inflammation processes were the main pathways found in silico to influence intramuscular fat deposition in beef cattle in the integrative mRNA-miRNA co-expression analysis.


Asunto(s)
Composición Corporal/genética , Metabolismo Energético/genética , Regulación de la Expresión Génica , MicroARNs/genética , Interferencia de ARN , ARN Mensajero/genética , Animales , Bovinos , Biología Computacional/métodos , Ontología de Genes , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Análisis de Secuencia de ADN , Transducción de Señal
8.
BMC Genomics ; 19(1): 499, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29945546

RESUMEN

BACKGROUND: Integration of high throughput DNA genotyping and RNA-sequencing data allows for the identification of genomic regions that control gene expression, known as expression quantitative trait loci (eQTL), on a whole genome scale. Intramuscular fat (IMF) content and carcass composition play important roles in metabolic and physiological processes in mammals because they influence insulin sensitivity and consequently prevalence of metabolic diseases such as obesity and type 2 diabetes. However, limited information is available on the genetic variants and mechanisms associated with IMF deposition in mammals. Thus, our hypothesis was that eQTL analyses could identify putative regulatory regions and transcription factors (TFs) associated with intramuscular fat (IMF) content traits. RESULTS: We performed an integrative eQTL study in skeletal muscle to identify putative regulatory regions and factors associated with intramuscular fat content traits. Data obtained from skeletal muscle samples of 192 animals was used for association analysis between 461,466 SNPs and the transcription level of 11,808 genes. This yielded 1268 cis- and 10,334 trans-eQTLs, among which we identified nine hotspot regions that each affected the expression of > 119 genes. These putative regulatory regions overlapped with previously identified QTLs for IMF content. Three of the hotspots respectively harbored the transcription factors USF1, EGR4 and RUNX1T1, which are known to play important roles in lipid metabolism. From co-expression network analysis, we further identified modules significantly correlated with IMF content and associated with relevant processes such as fatty acid metabolism, carbohydrate metabolism and lipid metabolism. CONCLUSION: This study provides novel insights into the link between genotype and IMF content as evident from the expression level. It thereby identifies genomic regions of particular importance and associated regulatory factors. These new findings provide new knowledge about the biological processes associated with genetic variants and mechanisms associated with IMF deposition in mammals.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Factores de Transcripción/metabolismo , Animales , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Factores de Transcripción/genética
9.
BMC Genomics ; 17: 196, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26951612

RESUMEN

BACKGROUND: A region on Sus scrofa chromosome 4 (SSC4) surrounding single nucleotide polymorphism (SNP) marker WUR10000125 (WUR) has been reported to be strongly associated with both weight gain and serum viremia in pigs after infection with PRRS virus (PRRSV). A proposed causal mutation in the guanylate binding protein 5 gene (GBP5) is predicted to truncate the encoded protein. To investigate transcriptional differences between WUR genotypes in early host response to PRRSV infection, an RNA-seq experiment was performed on globin depleted whole blood RNA collected on 0, 4, 7, 10 and 14 days post-infection (dpi) from eight littermate pairs with one AB (favorable) and one AA (unfavorable) WUR genotype animal per litter. RESULTS: Gene Ontology (GO) enrichment analysis of transcripts that were differentially expressed (DE) between dpi across both genotypes revealed an inflammatory response for all dpi when compared to day 0. However, at the early time points of 4 and 7dpi, several GO terms had higher enrichment scores compared to later dpi, including inflammatory response (p < 10(-7)), specifically regulation of NFkappaB (p < 0.01), cytokine, and chemokine activity (p < 0.01). At 10 and 14dpi, GO term enrichment indicated a switch to DNA damage response, cell cycle checkpoints, and DNA replication. Few transcripts were DE between WUR genotypes on individual dpi or averaged over all dpi, and little enrichment of any GO term was found. However, there were differences in expression patterns over time between AA and AB animals, which was confirmed by genotype-specific expression patterns of several modules that were identified in weighted gene co-expression network analyses (WGCNA). Minor differences between AA and AB animals were observed in immune response and DNA damage response (p = 0.64 and p = 0.11, respectively), but a significant effect between genotypes pointed to a difference in ion transport/homeostasis and the participation of G-coupled protein receptors (p = 8e-4), which was reinforced by results from regulatory and phenotypic impact factor analyses between genotypes. CONCLUSION: We propose these pathway differences between WUR genotypes are the result of the inability of the truncated GBP5 of the AA genotyped pigs to inhibit viral entry and replication as quickly as the intact GBP5 protein of the AB genotyped pigs.


Asunto(s)
Proteínas de Unión al GTP/genética , Polimorfismo de Nucleótido Simple , Síndrome Respiratorio y de la Reproducción Porcina/genética , Sus scrofa/genética , Animales , Quimiocinas/inmunología , Biología Computacional , Citocinas/inmunología , Daño del ADN , Genotipo , Inflamasomas/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino , Análisis de Secuencia de ARN , Sus scrofa/inmunología , Sus scrofa/virología , Porcinos , Transcriptoma , Viremia/genética , Viremia/inmunología
10.
BMC Genomics ; 17(1): 961, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27875996

RESUMEN

BACKGROUND: Lipids are a class of molecules that play an important role in cellular structure and metabolism in all cell types. In the last few decades, it has been reported that long-chain fatty acids (FAs) are involved in several biological functions from transcriptional regulation to physiological processes. Several fatty acids have been both positively and negatively implicated in different biological processes in skeletal muscle and other tissues. To gain insight into biological processes associated with fatty acid content in skeletal muscle, the aim of the present study was to identify differentially expressed genes (DEGs) and functional pathways related to gene expression regulation associated with FA content in cattle. RESULTS: Skeletal muscle transcriptome analysis of 164 Nellore steers revealed no differentially expressed genes (DEGs, FDR 10%) for samples with extreme values for linoleic acid (LA) or stearic acid (SA), and only a few DEGs for eicosapentaenoic acid (EPA, 5 DEGs), docosahexaenoic acid (DHA, 4 DEGs) and palmitic acid (PA, 123 DEGs), while large numbers of DEGs were associated with oleic acid (OA, 1134 DEGs) and conjugated linoleic acid cis9 trans11 (CLA-c9t11, 872 DEGs). Functional annotation and functional enrichment from OA DEGs identified important genes, canonical pathways and upstream regulators such as SCD, PLIN5, UCP3, CPT1, CPT1B, oxidative phosphorylation mitochondrial dysfunction, PPARGC1A, and FOXO1. Two important genes associated with lipid metabolism, gene expression and cancer were identified as DEGs between animals with high and low CLA-c9t11, specifically, epidermal growth factor receptor (EGFR) and RNPS. CONCLUSION: Only two out of seven classes of molecules of FA studied were associated with large changes in the expression profile of skeletal muscle. OA and CLA-c9t11 content had significant effects on the expression level of genes related to important biological processes associated with oxidative phosphorylation, and cell growth, survival, and migration. These results contribute to our understanding of how some FAs modulate metabolism and may have protective health function.


Asunto(s)
Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Músculo Esquelético/metabolismo , Transcriptoma , Animales , Bovinos , Calidad de los Alimentos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Redes y Vías Metabólicas , Ácido Oléico/metabolismo , Fenotipo , Carne Roja/normas , Reproducibilidad de los Resultados
11.
BMC Genomics ; 16: 516, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26159815

RESUMEN

BACKGROUND: The presence of variability in the response of pigs to Porcine Reproductive and Respiratory Syndrome virus (PRRSv) infection, and recent demonstration of significant genetic control of such responses, leads us to believe that selection towards more disease resistant pigs could be a valid strategy to reduce its economic impact on the swine industry. To find underlying molecular differences in PRRS susceptible versus more resistant pigs, 100 animals with extremely different growth rates and viremia levels after PRRSv infection were selected from a total of 600 infected pigs. A microarray experiment was conducted on whole blood RNA samples taken at 0, 4 and 7 days post infection (dpi) from these pigs. From these data, we examined associations of gene expression with weight gain and viral load phenotypes. The single nucleotide polymorphism (SNP) marker WUR10000125 (WUR) on the porcine 60 K SNP chip was shown to be associated with viral load and weight gain after PRRSv infection, and so the effect of the WUR10000125 (WUR) genotype on expression in whole blood was also examined. RESULTS: Limited information was obtained through linear modeling of blood gene differential expression (DE) that contrasted pigs with extreme phenotypes, for growth or viral load or between animals with different WUR genotype. However, using network-based approaches, molecular pathway differences between extreme phenotypic classes could be identified. Several gene clusters of interest were found when Weighted Gene Co-expression Network Analysis (WGCNA) was applied to 4 dpi contrasted with 0 dpi data. The expression pattern of one such cluster of genes correlated with weight gain and WUR genotype, contained numerous immune response genes such as cytokines, chemokines, interferon type I stimulated genes, apoptotic genes and genes regulating complement activation. In addition, Partial Correlation and Information Theory (PCIT) identified differentially hubbed (DH) genes between the phenotypically divergent groups. GO enrichment revealed that the target genes of these DH genes are enriched in adaptive immune pathways. CONCLUSION: There are molecular differences in blood RNA patterns between pigs with extreme phenotypes or with a different WUR genotype in early responses to PRRSv infection, though they can be quite subtle and more difficult to discover with conventional DE expression analyses. Co-expression analyses such as WGCNA and PCIT can be used to reveal network differences between such extreme response groups.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Animales , Citocinas/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , ARN/genética , Porcinos , Análisis de Matrices Tisulares/métodos , Carga Viral/métodos , Viremia/genética , Viremia/virología
12.
BMC Genomics ; 16: 412, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26016888

RESUMEN

BACKGROUND: Previously, we identified a major quantitative trait locus (QTL) for host response to Porcine Respiratory and Reproductive Syndrome virus (PRRSV) infection in high linkage disequilibrium (LD) with SNP rs80800372 on Sus scrofa chromosome 4 (SSC4). RESULTS: Within this QTL, guanylate binding protein 5 (GBP5) was differentially expressed (DE) (p < 0.05) in blood from AA versus AB rs80800372 genotyped pigs at 7,11, and 14 days post PRRSV infection. All variants within the GBP5 transcript in LD with rs80800372 exhibited allele specific expression (ASE) in AB individuals (p < 0.0001). A transcript re-assembly revealed three alternatively spliced transcripts for GBP5. An intronic SNP in GBP5, rs340943904, introduces a splice acceptor site that inserts five nucleotides into the transcript. Individuals homozygous for the unfavorable AA genotype predominantly produced this transcript, with a shifted reading frame and early stop codon that truncates the 88 C-terminal amino acids of the protein. RNA-seq analysis confirmed this SNP was associated with differential splicing by QTL genotype (p < 0.0001) and this was validated by quantitative capillary electrophoresis (p < 0.0001). The wild-type transcript was expressed at a higher level in AB versus AA individuals, whereas the five-nucleotide insertion transcript was the dominant form in AA individuals. Splicing and ASE results are consistent with the observed dominant nature of the favorable QTL allele. The rs340943904 SNP was also 100 % concordant with rs80800372 in a validation population that possessed an alternate form of the favorable B QTL haplotype. CONCLUSIONS: GBP5 is known to play a role in inflammasome assembly during immune response. However, the role of GBP5 host genetic variation in viral immunity is novel. These findings demonstrate that rs340943904 is a strong candidate causal mutation for the SSC4 QTL that controls variation in host response to PRRSV.


Asunto(s)
Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/química , Sitios de Carácter Cuantitativo , Sus scrofa , Empalme Alternativo , Animales , Proteínas de Unión al GTP/sangre , Regulación de la Expresión Génica , Genotipo , Polimorfismo de Nucleótido Simple , Síndrome Respiratorio y de la Reproducción Porcina/sangre , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Sitios de Empalme de ARN , Porcinos
13.
BMC Genomics ; 15: 948, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25361890

RESUMEN

BACKGROUND: Advances in human genomics have allowed unprecedented productivity in terms of algorithms, software, and literature available for translating raw next-generation sequence data into high-quality information. The challenges of variant identification in organisms with lower quality reference genomes are less well documented. We explored the consequences of commonly recommended preparatory steps and the effects of single and multi sample variant identification methods using four publicly available software applications (Platypus, HaplotypeCaller, Samtools and UnifiedGenotyper) on whole genome sequence data of 65 key ancestors of Swiss dairy cattle populations. Accuracy of calling next-generation sequence variants was assessed by comparison to the same loci from medium and high-density single nucleotide variant (SNV) arrays. RESULTS: The total number of SNVs identified varied by software and method, with single (multi) sample results ranging from 17.7 to 22.0 (16.9 to 22.0) million variants. Computing time varied considerably between software. Preparatory realignment of insertions and deletions and subsequent base quality score recalibration had only minor effects on the number and quality of SNVs identified by different software, but increased computing time considerably. Average concordance for single (multi) sample results with high-density chip data was 58.3% (87.0%) and average genotype concordance in correctly identified SNVs was 99.2% (99.2%) across software. The average quality of SNVs identified, measured as the ratio of transitions to transversions, was higher using single sample methods than multi sample methods. A consensus approach using results of different software generally provided the highest variant quality in terms of transition/transversion ratio. CONCLUSIONS: Our findings serve as a reference for variant identification pipeline development in non-human organisms and help assess the implication of preparatory steps in next-generation sequencing pipelines for organisms with incomplete reference genomes (pipeline code is included). Benchmarking this information should prove particularly useful in processing next-generation sequencing data for use in genome-wide association studies and genomic selection.


Asunto(s)
Bovinos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Animales , Genoma , Programas Informáticos
14.
Front Genet ; 15: 1360295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601075

RESUMEN

Complete blood counts (CBCs) measure the abundance of individual immune cells, red blood cells, and related measures such as platelets in circulating blood. These measures can indicate the health status of an animal; thus, baseline circulating levels in a healthy animal may be related to the productive life, resilience, and production efficiency of cattle. The objective of this study is to determine the heritability of CBC traits and identify genomic regions that are associated with CBC measurements in lactating Holstein dairy cattle. The heritability of CBCs was estimated using a Bayes C0 model. The study population consisted of 388 cows with genotypes at roughly 75,000 markers and 16 different CBC phenotypes taken at one to three time points (n = 33, 131, and 224 for 1, 2, and 3 time points, respectively). Heritabilities ranged from 0.00 ± 0.00 (red cell distribution width) to 0.68 ± 0.06 (lymphocytes). A total of 96 different 1-Mb windows were identified that explained more than 1% of the genetic variance for at least one CBC trait, with 10 windows explaining more than 1% of the genetic variance for two or more traits. Multiple genes in the identified regions have functions related to immune response, cell differentiation, anemia, and disease. Positional candidate genes include RAD52 motif-containing protein 1 (RDM1), which is correlated with the degree of immune infiltration of immune cells, and C-X-C motif chemokine ligand 12 (CXCL12), which is critically involved in neutrophil bone marrow storage and release regulation and enhances neutrophil migration. Since animal health directly impacts feed intake, understanding the genetics of CBCs may be useful in identifying more disease-resilient and feed-efficient dairy cattle. Identification of genes responsible for variation in CBCs will also help identify the variability in how dairy cattle defend against illness and injury.

15.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38092373

RESUMEN

Seasonal shedding of winter hair at the start of summer is well studied in wild and domesticated populations. However, the genetic influences on this trait and their interactions are poorly understood. We use data from 13,364 cattle with 36,899 repeated phenotypes to investigate the relationship between hair shedding and environmental variables, single nucleotide polymorphisms, and their interactions to understand quantitative differences in seasonal shedding. Using deregressed estimated breeding values from a repeated records model in a genome-wide association analysis (GWAA) and meta-analysis of year-specific GWAA gave remarkably similar results. These GWAA identified hundreds of variants associated with seasonal hair shedding. There were especially strong associations between chromosomes 5 and 23. Genotype-by-environment interaction GWAA identified 1,040 day length-by-genotype interaction associations and 17 apparent temperature-by-genotype interaction associations with hair shedding, highlighting the importance of day length on hair shedding. Accurate genomic predictions of hair shedding were created for the entire dataset, Angus, Hereford, Brangus, and multibreed datasets. Loci related to metabolism and light-sensing have a large influence on seasonal hair shedding. This is one of the largest genetic analyses of a phenological trait and provides insight into both agriculture production and basic science.


Asunto(s)
Señales (Psicología) , Estudio de Asociación del Genoma Completo , Bovinos/genética , Animales , Estaciones del Año , Genoma , Genotipo , Genómica , Polimorfismo de Nucleótido Simple
16.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626724

RESUMEN

BACKGROUND: The accurate identification of the functional elements in the bovine genome is a fundamental requirement for high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. RESULTS: A total of 160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets (PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5' untranslated regions were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available quantitative trait loci data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. CONCLUSIONS: These validated results show significant improvement over current bovine genome annotations.


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Bovinos/genética , Animales , Análisis de Secuencia de ARN , Transcriptoma , Sitios de Carácter Cuantitativo , ARN , Isoformas de Proteínas , Anotación de Secuencia Molecular
17.
Front Physiol ; 14: 1152576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37179835

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive muscle disease that results in muscle wasting, wheelchair dependence, and eventual death due to cardiac and respiratory complications. In addition to muscle fragility, dystrophin deficiency also results in multiple secondary dysfunctions, which may lead to the accumulation of unfolded proteins causing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The purpose of this investigation was to understand how ER stress and the UPR are modified in muscle from D2-mdx mice, an emerging DMD model, and from humans with DMD. We hypothesized that markers of ER stress and the UPR are upregulated in D2-mdx and human dystrophic muscles compared to their healthy counterparts. Immunoblotting in diaphragms from 11-month-old D2-mdx and DBA mice indicated increased ER stress and UPR in dystrophic diaphragms compared to healthy, including increased relative abundance of ER stress chaperone CHOP, canonical ER stress transducers ATF6 and pIRE1α S724, and transcription factors that regulate the UPR such as ATF4, XBP1s, and peIF2α S51. The publicly available Affymetrix dataset (GSE38417) was used to analyze the expression of ER stress and UPR-related transcripts and processes. Fifty-eight upregulated genes related to ER stress and the UPR in human dystrophic muscles suggest pathway activation. Further, based on analyses using iRegulon, putative transcription factors that regulate this upregulation profile were identified, including ATF6, XBP1, ATF4, CREB3L2, and EIF2AK3. This study adds to and extends the emerging knowledge of ER stress and the UPR in dystrophin deficiency and identifies transcriptional regulators that may be responsible for these changes and be of therapeutic interest.

18.
Front Genet ; 14: 1107462, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287538

RESUMEN

Neutrophils are vital components of the immune system for limiting the invasion and proliferation of pathogens in the body. Surprisingly, the functional annotation of porcine neutrophils is still limited. The transcriptomic and epigenetic assessment of porcine neutrophils from healthy pigs was performed by bulk RNA sequencing and transposase accessible chromatin sequencing (ATAC-seq). First, we sequenced and compared the transcriptome of porcine neutrophils with eight other immune cell transcriptomes to identify a neutrophil-enriched gene list within a detected neutrophil co-expression module. Second, we used ATAC-seq analysis to report for the first time the genome-wide chromatin accessible regions of porcine neutrophils. A combined analysis using both transcriptomic and chromatin accessibility data further defined the neutrophil co-expression network controlled by transcription factors likely important for neutrophil lineage commitment and function. We identified chromatin accessible regions around promoters of neutrophil-specific genes that were predicted to be bound by neutrophil-specific transcription factors. Additionally, published DNA methylation data from porcine immune cells including neutrophils were used to link low DNA methylation patterns to accessible chromatin regions and genes with highly enriched expression in porcine neutrophils. In summary, our data provides the first integrative analysis of the accessible chromatin regions and transcriptional status of porcine neutrophils, contributing to the Functional Annotation of Animal Genomes (FAANG) project, and demonstrates the utility of chromatin accessible regions to identify and enrich our understanding of transcriptional networks in a cell type such as neutrophils.

19.
JDS Commun ; 4(3): 201-204, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37360126

RESUMEN

Residual feed intake (RFI) has been used as a measure of feed efficiency in farm animals. In lactating dairy cattle, RFI is typically obtained as the difference between dry matter intake observations and predictions from regression on known energy sinks, and effects of parity, days in milk, and cohort. The impact of parity (lactation number) on the estimation of RFI is not well understood, so the objectives of this study were to (1) evaluate alternative RFI models in which the energy sinks (metabolic body weight, body weight change, and secreted milk energy) were nested or not nested within parity, and (2) estimate variance components and genetic correlations for RFI across parities. Data consisted of 72,474 weekly RFI records of 5,813 lactating Holstein cows collected from 2007 to 2022 in 5 research stations across the United States. Estimates of heritability, repeatability, and genetic correlations between weekly RFI for parities 1, 2, and 3 were obtained using bivariate repeatability animal models. The nested RFI model showed better goodness of fit than the nonnested model, and some partial regression coefficients of dry matter intake on energy sinks were heterogeneous between parities. However, the Spearman's rank correlation between RFI values calculated from nested and nonnested models was equal to 0.99. Similarly, Spearman's rank correlation between the RFI breeding values from these 2 models was equal to 0.98. Heritability estimates for RFI were equal to 0.16 for parity 1, 0.19 for parity 2, and 0.22 for parity 3. Repeatability estimates for RFI across weeks within parities were high, ranging from 0.51 to 0.57. Spearman's rank correlations of sires' breeding values were 0.99 between parities 1 and 2, 0.91 between parities 1 and 3, and 0.92 between parities 2 and 3. We conclude that nesting energy sinks within parity when computing RFI improves model goodness of fit, but the impact on the estimated breading values appears to be minimal.

20.
Proc Natl Acad Sci U S A ; 106(46): 19250-5, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19887637

RESUMEN

Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle.


Asunto(s)
Codón sin Sentido , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Enanismo/genética , Enanismo/veterinaria , Secuencia de Aminoácidos , Animales , Bovinos , Células Cultivadas , Colágeno Tipo II/genética , Colágeno Tipo X/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo II , Exones/genética , Regulación de la Expresión Génica , Placa de Crecimiento/metabolismo , Datos de Secuencia Molecular , Estabilidad del ARN/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda