Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nature ; 577(7789): 260-265, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31853061

RESUMEN

Chronic inflammation is accompanied by recurring cycles of tissue destruction and repair and is associated with an increased risk of cancer1-3. However, how such cycles affect the clonal composition of tissues, particularly in terms of cancer development, remains unknown. Here we show that in patients with ulcerative colitis, the inflamed intestine undergoes widespread remodelling by pervasive clones, many of which are positively selected by acquiring mutations that commonly involve the NFKBIZ, TRAF3IP2, ZC3H12A, PIGR and HNRNPF genes and are implicated in the downregulation of IL-17 and other pro-inflammatory signals. Mutational profiles vary substantially between colitis-associated cancer and non-dysplastic tissues in ulcerative colitis, which indicates that there are distinct mechanisms of positive selection in both tissues. In particular, mutations in NFKBIZ are highly prevalent in the epithelium of patients with ulcerative colitis but rarely found in both sporadic and colitis-associated cancer, indicating that NFKBIZ-mutant cells are selected against during colorectal carcinogenesis. In further support of this negative selection, we found that tumour formation was significantly attenuated in Nfkbiz-mutant mice and cell competition was compromised by disruption of NFKBIZ in human colorectal cancer cells. Our results highlight common and discrete mechanisms of clonal selection in inflammatory tissues, which reveal unexpected cancer vulnerabilities that could potentially be exploited for therapeutics in colorectal cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Colitis Ulcerosa/genética , Tasa de Mutación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Neoplasias Colorrectales/genética , Humanos , Ratones , Transducción de Señal
2.
Blood ; 141(5): 534-549, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322930

RESUMEN

Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained ∼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.


Asunto(s)
ARN Helicasas DEAD-box , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Adulto , Anciano de 80 o más Años , Femenino , Humanos , Masculino , ARN Helicasas DEAD-box/genética , Células Germinativas , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética
3.
Blood ; 131(6): 621-635, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29146882

RESUMEN

Splicing factor mutations are characteristic of myelodysplastic syndromes (MDS) and related myeloid neoplasms and implicated in their pathogenesis, but their roles in the development of MDS have not been fully elucidated. In the present study, we investigated the consequence of mutant Srsf2 expression using newly generated Vav1-Cre-mediated conditional knockin mice. Mice carrying a heterozygous Srsf2 P95H mutation showed significantly reduced numbers of hematopoietic stem and progenitor cells (HSPCs) and differentiation defects both in the steady-state condition and transplantation settings. Srsf2-mutated hematopoietic stem cells (HSCs) showed impaired long-term reconstitution compared with control mice in competitive repopulation assays. Although the Srsf2 mutant mice did not develop MDS under the steady-state condition, when their stem cells were transplanted into lethally irradiated mice, the recipients developed anemia, leukopenia, and erythroid dysplasia, which suggests the role of replicative stress in the development of an MDS-like phenotype in Srsf2-mutated mice. RNA sequencing of the Srsf2-mutated HSPCs revealed a number of abnormal splicing events and differentially expressed genes, including several potential targets implicated in the pathogenesis of hematopoietic malignancies, such as Csf3r, Fyn, Gnas, Nsd1, Hnrnpa2b1, and Trp53bp1 Among the mutant Srsf2-associated splicing events, most commonly observed were the enhanced inclusion and/or exclusion of cassette exons, which were caused by the altered consensus motifs for the recognition of exonic splicing enhancers. Our findings suggest that the mutant Srsf2 leads to a compromised HSC function by causing abnormal RNA splicing and expression, contributing to the deregulated hematopoiesis that recapitulates the MDS phenotypes, possibly as a result of additional genetic and/or environmental insults.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Mutación Missense , Empalme del ARN/genética , Factores de Empalme Serina-Arginina/genética , Sustitución de Aminoácidos , Animales , Mutación de Línea Germinal , Hematopoyesis/genética , Histidina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense/fisiología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Prolina/genética
4.
Rinsho Ketsueki ; 61(9): 1120-1129, 2020.
Artículo en Japonés | MEDLINE | ID: mdl-33162507

RESUMEN

Through intensive efforts of genome sequencing of myeloid malignancies, a comprehensive registry of driver mutations has been revealed, virtually providing us with a complete spectrum of driver mutations in these diseases. Importantly, there have been significant correlations between driver mutations, which suggests that some combinations of genetic events confer strong selective advantage on mutated stem cells. Next-generation sequencing technology have also revealed that clonal hematopoiesis is a common, age-related process in which a somatically mutated hematopoietic precursor gives rise to a genetically distinct subpopulation in the blood. Furthermore, novel germline mutations were identified, indicating that mutated stem cells appear long before myelodysplastic syndrome (MDS) presentation. Such founding mutations are thought to be acquired and positively selected in a well-organized manner to allow for expansion of the initiating clone to compromise normal hematopoiesis, ultimately giving rise to MDS and subsequent transformation to acute myeloid leukemia (AML) in many patients.


Asunto(s)
Trastornos Mieloproliferativos , Evolución Clonal/genética , Humanos , Leucemia Mieloide Aguda/genética , Mutación
5.
Rinsho Ketsueki ; 61(4): 358-367, 2020.
Artículo en Japonés | MEDLINE | ID: mdl-32378581

RESUMEN

By intensive efforts of sequencing a large number of genomes from patients with myelodysplastic syndromes (MDS), a comprehensive registry of driver mutations repeatedly found in MDS patients has been identified, providing us with a virtually complete spectrum of driver mutations in this disease. Importantly, significant correlations between driver mutations have been revealed, suggesting that some combinations of genetic events confer strong selective advantages on mutated stem cells. Next-generation sequencing technology has also revealed that clonal hematopoiesis is a common, age-related process, in which a somatically mutated hematopoietic precursor gives rise to a genetically distinct subpopulation in the blood. Furthermore, novel germline mutations have been identified, indicating that mutated stem cells appear long before MDS presentation. Such founding mutations are thought to be acquired and positively selected for in a well-organized manner to allow expansion of the initiating clone to compromise normal hematopoiesis, ultimately resulting in MDS and subsequent transformation into acute myeloid leukemia in many patients.


Asunto(s)
Síndromes Mielodisplásicos , Evolución Clonal , Hematopoyesis , Humanos , Mutación
6.
N Engl J Med ; 373(1): 35-47, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26132940

RESUMEN

BACKGROUND: In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. METHODS: We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. RESULTS: Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. CONCLUSIONS: Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).


Asunto(s)
Anemia Aplásica/genética , Hematopoyesis/genética , Mutación , Factores de Edad , Anciano , Anemia Aplásica/sangre , Anemia Aplásica/mortalidad , Células Clonales , Femenino , Humanos , Cariotipificación , Leucemia Mieloide Aguda/genética , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Análisis de Secuencia de ADN
7.
Blood ; 127(5): 596-604, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26574607

RESUMEN

Adult T-cell leukemia/lymphoma (ATLL) is a distinct form of peripheral T-cell lymphoma with poor prognosis, which is caused by the human T-lymphotropic virus type 1 (HTLV-1). In contrast to the unequivocal importance of HTLV-1 infection in the pathogenesis of ATLL, the role of acquired mutations in HTLV-1 infected T cells has not been fully elucidated, with a handful of genes known to be recurrently mutated. In this study, we identified unique RHOA mutations in ATLL through whole genome sequencing of an index case, followed by deep sequencing of 203 ATLL samples. RHOA mutations showed distinct distribution and function from those found in other cancers. Involving 15% (30/203) of ATLL cases, RHOA mutations were widely distributed across the entire coding sequence but almost invariably located at the guanosine triphosphate (GTP)-binding pocket, with Cys16Arg being most frequently observed. Unexpectedly, depending on mutation types and positions, these RHOA mutants showed different or even opposite functional consequences in terms of GTP/guanosine diphosphate (GDP)-binding kinetics, regulation of actin fibers, and transcriptional activation. The Gly17Val mutant did not bind GTP/GDP and act as a dominant negative molecule, whereas other mutants (Cys16Arg and Ala161Pro) showed fast GTP/GDP cycling with enhanced transcriptional activation. These findings suggest that both loss- and gain-of-RHOA functions could be involved in ATLL leukemogenesis. In summary, our study not only provides a novel insight into the molecular pathogenesis of ATLL but also highlights a unique role of variegation of heterologous RHOA mutations in human cancers.


Asunto(s)
Leucemia-Linfoma de Células T del Adulto/genética , Mutación , Proteína de Unión al GTP rhoA/genética , Adulto , Secuencia de Aminoácidos , Sitios de Unión , Análisis Mutacional de ADN , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia-Linfoma de Células T del Adulto/metabolismo , Leucemia-Linfoma de Células T del Adulto/patología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/metabolismo
8.
Nature ; 478(7367): 64-9, 2011 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-21909114

RESUMEN

Myelodysplastic syndromes and related disorders (myelodysplasia) are a heterogeneous group of myeloid neoplasms showing deregulated blood cell production with evidence of myeloid dysplasia and a predisposition to acute myeloid leukaemia, whose pathogenesis is only incompletely understood. Here we report whole-exome sequencing of 29 myelodysplasia specimens, which unexpectedly revealed novel pathway mutations involving multiple components of the RNA splicing machinery, including U2AF35, ZRSR2, SRSF2 and SF3B1. In a large series analysis, these splicing pathway mutations were frequent (∼45 to ∼85%) in, and highly specific to, myeloid neoplasms showing features of myelodysplasia. Conspicuously, most of the mutations, which occurred in a mutually exclusive manner, affected genes involved in the 3'-splice site recognition during pre-mRNA processing, inducing abnormal RNA splicing and compromised haematopoiesis. Our results provide the first evidence indicating that genetic alterations of the major splicing components could be involved in human pathogenesis, also implicating a novel therapeutic possibility for myelodysplasia.


Asunto(s)
Mutación/genética , Síndromes Mielodisplásicos/genética , Empalme del ARN/genética , Empalme Alternativo/genética , Exoma/genética , Hematopoyesis/genética , Humanos , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Empalme de ARN/genética , Ribonucleoproteínas/genética , Empalmosomas/genética , Factor de Empalme U2AF
9.
Haematologica ; 100(8): 1051-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26001790

RESUMEN

Next generation sequencing technologies have provided insights into the molecular heterogeneity of various myeloid neoplasms, revealing previously unknown somatic genetic events. In our cohort of 1444 cases analyzed by next generation sequencing, somatic mutations in the gene BRCA1-BRCA2-containing complex 3 (BRCC3) were identified in 28 cases (1.9%). BRCC3 is a member of the JAMM/MPN+ family of zinc metalloproteases capable of cleaving Lys-63 linked polyubiquitin chains, and is implicated in DNA repair. The mutations were located throughout its coding region. The average variant allelic frequency of BRCC3 mutations was 30.1%, and by a serial sample analysis at two different time points a BRCC3 mutation was already identified in the initial stage of a myelodysplastic syndrome. BRCC3 mutations commonly occurred in nonsense (n=12), frameshift (n=4), and splice site (n=5) configurations. Due to the marginal male dominance (odds ratio; 2.00, 0.84-4.73) of BRCC3 mutations, the majority of mutations (n=23; 82%) were hemizygous. Phenotypically, BRCC3 mutations were frequently observed in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms and associated with -Y abnormality (odds ratio; 3.70, 1.25-11.0). Clinically, BRCC3 mutations were also related to higher age (P=0.01), although prognosis was not affected. Knockdown of Brcc3 gene expression in murine bone marrow lineage negative, Sca1 positive, c-kit positive cells resulted in 2-fold more colony formation and modest differentiation defect. Thus, BRCC3 likely plays a role as tumor-associated gene in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms.


Asunto(s)
Proteínas de la Membrana/genética , Mutación , Trastornos Mieloproliferativos/genética , Anciano , Anciano de 80 o más Años , Alelos , Animales , Proteína BRCA1/genética , Aberraciones Cromosómicas , Análisis Mutacional de ADN , Enzimas Desubicuitinizantes , Femenino , Frecuencia de los Genes , Técnicas de Silenciamiento del Gen , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Trastornos Mieloproliferativos/diagnóstico , Fenotipo , ARN Interferente Pequeño/genética
10.
Leukemia ; 37(9): 1802-1811, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37464069

RESUMEN

SETBP1 is a potential epigenetic regulator whose hotspot mutations preventing proteasomal degradation are recurrently detected in myeloid malignancies with poor prognosis. It is believed that the mutant SETBP1 exerts amplified effects of wild-type SETBP1 rather than neomorphic functions. This indicates that dysregulated quantitative control of SETBP1 would result in the transformation of hematopoietic cells. However, little is known about the roles of endogenous SETBP1 in malignant and normal hematopoiesis. Thus, we integrated the analyses of primary AML and healthy samples, cancer cell lines, and a newly generated murine model, Vav1-iCre;Setbp1fl/fl. Despite the expression in long-term hematopoietic stem cells, SETBP1 depletion in normal hematopoiesis minimally alters self-renewal, differentiation, or reconstitution in vivo. Indeed, its loss does not profoundly alter transcription or chromatin accessibilities. Furthermore, although AML with high SETBP1 mRNA is associated with genetic and clinical characteristics for dismal outcomes, SETBP1 is dispensable for the development or maintenance of AML. Contrary to the evidence that SETBP1 mutations are restricted to myeloid malignancies, dependency on SETBP1 mRNA expression is not observed in AML. These unexpected results shed light on the unrecognized idea that a physiologically nonessential gene can act as an oncogene when the machinery of protein degradation is damaged.


Asunto(s)
Hematopoyesis , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Proteínas Portadoras/genética , Diferenciación Celular , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/patología , Mutación , Proteínas Nucleares/genética
11.
Blood Cancer Discov ; 3(5): 410-427, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35839275

RESUMEN

Acute erythroid leukemia (AEL) is a unique subtype of acute myeloid leukemia characterized by prominent erythroid proliferation whose molecular basis is poorly understood. To elucidate the underlying mechanism of erythroid proliferation, we analyzed 121 AEL using whole-genome, whole-exome, and/or targeted-capture sequencing, together with transcriptome analysis of 21 AEL samples. Combining publicly available sequencing data, we found a high frequency of gains and amplifications involving EPOR/JAK2 in TP53-mutated cases, particularly those having >80% erythroblasts designated as pure erythroid leukemia (10/13). These cases were frequently accompanied by gains and amplifications of ERG/ETS2 and associated with a very poor prognosis, even compared with other TP53-mutated AEL. In addition to activation of the STAT5 pathway, a common feature across all AEL cases, these AEL cases exhibited enhanced cell proliferation and heme metabolism and often showed high sensitivity to ruxolitinib in vitro and in xenograft models, highlighting a potential role of JAK2 inhibition in therapeutics of AEL. SIGNIFICANCE: This study reveals the major role of gains, amplifications, and mutations of EPOR and JAK2 in the pathogenesis of pure erythroleukemia. Their frequent response to ruxolitinib in patient-derived xenograft and cell culture models highlights a possible therapeutic role of JAK2 inhibition for erythroleukemia with EPOR/JAK2-involving lesions. This article is highlighted in the In This Issue feature, p. 369.


Asunto(s)
Janus Quinasa 2 , Leucemia Eritroblástica Aguda , Leucemia Mieloide Aguda , Receptores de Eritropoyetina , Exoma , Humanos , Janus Quinasa 2/genética , Leucemia Eritroblástica Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Pronóstico , Receptores de Eritropoyetina/genética
12.
Cell Rep ; 36(8): 109576, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433054

RESUMEN

Paraspeckles are membraneless organelles formed through liquid-liquid phase separation and consist of multiple proteins and RNAs, including NONO, SFPQ, and NEAT1. The role of paraspeckles and the component NONO in hematopoiesis remains unknown. In this study, we show histone modifier ASXL1 is involved in paraspeckle formation. ASXL1 forms phase-separated droplets, upregulates NEAT1 expression, and increases NONO-NEAT1 interactions through the C-terminal intrinsically disordered region (IDR). In contrast, a pathogenic ASXL mutant (ASXL1-MT) lacking IDR does not support the interaction of paraspeckle components. Furthermore, paraspeckles are disrupted and Nono localization is abnormal in the cytoplasm of hematopoietic stem and progenitor cells (HSPCs) derived from ASXL1-MT knockin mice. Nono depletion and the forced expression of cytoplasmic NONO impair the repopulating potential of HSPCs, as does ASXL1-MT. Our study indicates a link between ASXL1 and paraspeckle components in the maintenance of normal hematopoiesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Hematopoyéticas/metabolismo , Paraspeckles/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Animales , Proteínas de Unión al ADN/genética , Femenino , Células HL-60 , Células HeLa , Hematopoyesis , Humanos , Ratones , Ratones Transgénicos , Paraspeckles/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Células THP-1
13.
Cancer Discov ; 10(6): 836-853, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249213

RESUMEN

STAG2 encodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant comutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis. Combined loss of STAG2 and RUNX1, which colocalize at enhancer-rich, CTCF-deficient sites, synergistically attenuates enhancer-promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPC) and myelodysplastic syndromes (MDS) in mice. Attenuated enhancer-promoter loops in STAG2/RUNX1-deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Downregulation of high-pausing genes is also confirmed in STAG2-cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2-RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis. SIGNIFICANCE: We demonstrate a critical role of an interplay between STAG2 and a master transcription factor of hematopoiesis, RUNX1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer-promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency.This article is highlighted in the In This Issue feature, p. 747.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Cromatina/genética , Proteínas Cromosómicas no Histona/deficiencia , Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Síndromes Mielodisplásicos/etiología , Animales , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Cohesinas
14.
Front Genet ; 10: 338, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31040863

RESUMEN

Serine/arginine-rich splicing factor 2 (SRSF2) is a member of the SR protein family that is involved in both constitutive and alternative mRNA splicing. Mutations in SRSF2 gene are frequently reported in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). It is imperative to understand how these mutations affect SRSF2-mediated splicing and cause MDS. In this study, we characterized MDS-associated SRSF2 mutants (P95H, P95L, and P95R). We found that those mutants and wild-type SRSF2 proteins showed nuclear localization in HeLa cells. In vitro splicing reaction also revealed that mutant proteins associated with both precursor and spliced mRNAs, suggesting that the mutants directly participate in splicing. We established the human myeloid leukemia K562 cell lines that stably expressed myc-tagged wild-type or mutant SRSF2 proteins, and then performed RNA-sequence to analyze the splicing pattern of each cell line. The results revealed that both wild-type and mutants affected splicing of approximately 3,000 genes. Although splice site sequences adjacent to the affected exons showed no significant difference compared to the total exons, exonic motif analyses with both inclusion- and exclusion-enhanced exons demonstrated that wild-type and mutants have different binding sequences in exons. These results indicate that mutations of SRSF2 in MDS change binding properties of SRSF2 to exonic motifs and this causes aberrant splicing.

15.
Leukemia ; 33(3): 612-624, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30209403

RESUMEN

Leukemic relapse is frequently accompanied by progressively aggressive clinical course. To understand the molecular mechanism of leukemic relapse, MLL/AF9-transformed mouse leukemia cells were serially transplanted in C57BL/6 mice (N = 96) by mimicking repeated recurrences, where mutations were monitored by exome sequencing (N = 42). The onset of leukemia was progressively promoted with advanced transplants, during which increasing numbers of somatic mutations were acquired (P < 0.005). Among these, mutations in Ptpn11 (p.G60R) and Braf (p.V637E) corresponded to those identified in human MLL-AML, while recurrent mutations affecting Msn (p.R295C) were observed only in mouse but not in human MLL-AML. Another mutated gene of interest was Gnb2 which was reported to be recurrently mutated in various hematological neoplasms. Gnb2 mutations (p.G77R) were significantly increased in clone size (P = 0.007) and associated with earlier leukemia onset (P = 0.011). GNB2 transcripts were significantly upregulated in human MLL-AML compared to MLL-negative AML (P < 0.05), which was supported by significantly increased Gnb2 transcript induced by MLL/AF9 overexpression (P < 0.001). In in vivo model, both mutation and overexpression of GNB2 caused leukemogenesis, and downregulation of GNB2 expression reduced proliferative potential and survival benefit, suggesting a driver role of GNB2. In conclusion, alterations of driver genes over time may play an important role in the progression of MLL-AML.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Proteínas de Unión al GTP/genética , Regulación Leucémica de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Proteínas de Fusión Oncogénica/genética , Regulación hacia Arriba/genética
16.
Nat Genet ; 49(8): 1274-1281, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28671687

RESUMEN

The outcome of treatment-refractory and/or relapsed pediatric T cell acute lymphoblastic leukemia (T-ALL) is extremely poor, and the genetic basis for this is not well understood. Here we report comprehensive profiling of 121 cases of pediatric T-ALL using transcriptome and/or targeted capture sequencing, through which we identified new recurrent gene fusions involving SPI1 (STMN1-SPI1 and TCF7-SPI1). Cases positive for fusions involving SPI1 (encoding PU.1), accounting for 3.9% (7/181) of the examined pediatric T-ALL cases, showed a double-negative (DN; CD4-CD8-) or CD8+ single-positive (SP) phenotype and had uniformly poor overall survival. These cases represent a subset of pediatric T-ALL distinguishable from the known T-ALL subsets in terms of expression of genes involved in T cell precommitment, establishment of T cell identity, and post-ß-selection maturation and with respect to mutational profile. PU.1 fusion proteins retained transcriptional activity and, when constitutively expressed in mouse stem/progenitor cells, induced cell proliferation and resulted in a maturation block. Our findings highlight a unique role of SPI1 fusions in high-risk pediatric T-ALL.


Asunto(s)
Fusión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Adolescente , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Análisis de Supervivencia , Subgrupos de Linfocitos T
17.
Science ; 344(6186): 917-20, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24855271

RESUMEN

Cushing's syndrome is caused by excess cortisol production from the adrenocortical gland. In corticotropin-independent Cushing's syndrome, the excess cortisol production is primarily attributed to an adrenocortical adenoma, in which the underlying molecular pathogenesis has been poorly understood. We report a hotspot mutation (L206R) in PRKACA, which encodes the catalytic subunit of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), in more than 50% of cases with adrenocortical adenomas associated with corticotropin-independent Cushing's syndrome. The L206R PRKACA mutant abolished its binding to the regulatory subunit of PKA (PRKAR1A) that inhibits catalytic activity of PRKACA, leading to constitutive, cAMP-independent PKA activation. These results highlight the major role of cAMP-independent activation of cAMP/PKA signaling by somatic mutations in corticotropin-independent Cushing's syndrome, providing insights into the diagnosis and therapeutics of this syndrome.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/genética , Adenoma Corticosuprarrenal/genética , Síndrome de Cushing/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Hormona Adrenocorticotrópica/metabolismo , Animales , Dominio Catalítico/genética , Síndrome de Cushing/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Análisis Mutacional de ADN , Subunidades alfa de la Proteína de Unión al GTP/genética , Células HEK293 , Humanos , Ratones , Mutación , Células 3T3 NIH , Células PC12 , Ratas
18.
Nat Genet ; 45(8): 937-41, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23832011

RESUMEN

Juvenile myelomonocytic leukemia (JMML) is an intractable pediatric leukemia with poor prognosis whose molecular pathogenesis is poorly understood, except for somatic or germline mutations of RAS pathway genes, including PTPN11, NF1, NRAS, KRAS and CBL, in the majority of cases. To obtain a complete registry of gene mutations in JMML, whole-exome sequencing was performed for paired tumor-normal DNA from 13 individuals with JMML (cases), which was followed by deep sequencing of 8 target genes in 92 tumor samples. JMML was characterized by a paucity of gene mutations (0.85 non-silent mutations per sample) with somatic or germline RAS pathway involvement in 82 cases (89%). The SETBP1 and JAK3 genes were among common targets for secondary mutations. Mutations in the latter were often subclonal and may be involved in the progression rather than the initiation of leukemia, and these mutations associated with poor clinical outcome. Our findings provide new insights into the pathogenesis and progression of JMML.


Asunto(s)
Proteínas Portadoras/genética , Exoma , Janus Quinasa 3/genética , Leucemia Mielomonocítica Juvenil/genética , Mutación , Proteínas Nucleares/genética , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Leucemia Mielomonocítica Juvenil/metabolismo , Leucemia Mielomonocítica Juvenil/mortalidad , Masculino , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
19.
Nat Genet ; 45(8): 860-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23797736

RESUMEN

Clear-cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer and its molecular pathogenesis is incompletely understood. Here we report an integrated molecular study of ccRCC in which ≥100 ccRCC cases were fully analyzed by whole-genome and/or whole-exome and RNA sequencing as well as by array-based gene expression, copy number and/or methylation analyses. We identified a full spectrum of genetic lesions and analyzed gene expression and DNA methylation signatures and determined their impact on tumor behavior. Defective VHL-mediated proteolysis was a common feature of ccRCC, which was caused not only by VHL inactivation but also by new hotspot TCEB1 mutations, which abolished Elongin C-VHL binding, leading to HIF accumulation. Other newly identified pathways and components recurrently mutated in ccRCC included PI3K-AKT-mTOR signaling, the KEAP1-NRF2-CUL3 apparatus, DNA methylation, p53-related pathways and mRNA processing. This integrated molecular analysis unmasked new correlations between DNA methylation, gene mutation and/or gene expression and copy number profiles, enabling the stratification of clinical risks for patients with ccRCC.


Asunto(s)
Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/mortalidad , Línea Celular , Análisis por Conglomerados , Variaciones en el Número de Copia de ADN , Metilación de ADN , Elonguina , Exoma , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/mortalidad , Mutación , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Nat Genet ; 45(11): 1293-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24056718

RESUMEN

Transient abnormal myelopoiesis (TAM) is a myeloid proliferation resembling acute megakaryoblastic leukemia (AMKL), mostly affecting perinatal infants with Down syndrome. Although self-limiting in a majority of cases, TAM may evolve as non-self-limiting AMKL after spontaneous remission (DS-AMKL). Pathogenesis of these Down syndrome-related myeloid disorders is poorly understood, except for GATA1 mutations found in most cases. Here we report genomic profiling of 41 TAM, 49 DS-AMKL and 19 non-DS-AMKL samples, including whole-genome and/or whole-exome sequencing of 15 TAM and 14 DS-AMKL samples. TAM appears to be caused by a single GATA1 mutation and constitutive trisomy 21. Subsequent AMKL evolves from a pre-existing TAM clone through the acquisition of additional mutations, with major mutational targets including multiple cohesin components (53%), CTCF (20%), and EZH2, KANSL1 and other epigenetic regulators (45%), as well as common signaling pathways, such as the JAK family kinases, MPL, SH2B3 (LNK) and multiple RAS pathway genes (47%).


Asunto(s)
Síndrome de Down/genética , Síndrome de Down/inmunología , Leucemia Megacarioblástica Aguda/genética , Reacción Leucemoide/genética , Secuencia de Bases , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/genética , Proliferación Celular , Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos Par 21/genética , Proteína Potenciadora del Homólogo Zeste 2 , Factor de Transcripción GATA1/genética , Perfilación de la Expresión Génica , Humanos , Células Mieloides , Trastornos Mieloproliferativos/genética , Proteínas Nucleares/genética , Complejo Represivo Polycomb 2/genética , Proteínas Represoras/genética , Análisis de Secuencia de ADN , Cohesinas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda