Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685990

RESUMEN

Calcium-dependent protein kinases (CDPKs) are one of the main Ca2+ decoders in plants. Among them, Arabidopsis thaliana AtCPK1 is one of the most studied CDPK genes as a positive regulator of plant responses to biotic and abiotic stress. The mutated form of AtCPK1, in which the autoinhibitory domain is inactivated (AtCPK1-Ca), provides constitutive kinase activity by mimicking a stress-induced increase in the Ca2+ flux. In the present study, we performed a proteomic analysis of Vitis amurensis calli overexpressing the AtCPK1-Ca form using untransformed calli as a control. In our previous studies, we have shown that the overexpression of this mutant form leads to the activation of secondary metabolism in plant cell cultures, including an increase in resveratrol biosynthesis in V. amurensis cell cultures. We analyzed upregulated and downregulated proteins in control and transgenic callus cultures using two-dimensional gel electrophoresis, and Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF). In calli transformed with AtCPK1-Ca, an increased amounts of pathogenesis-related proteins were found. A quantitative real-time PCR analysis confirmed this result.


Asunto(s)
Arabidopsis , Vitis , Arabidopsis/genética , Técnicas de Cultivo de Célula , Proteoma/genética , Proteómica , Vitis/genética
2.
Planta ; 256(1): 8, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690636

RESUMEN

MAIN CONCLUSION: Increased flavonol accumulation and enhanced drought tolerance in A4-rolB-overexpressing plants can be explained by the cooperative action of the SA and ROS signalling pathways. Clarification of function of the A4-rolB plast gene from pRiA4 of Rhizobium rhizogenes will allow a better understanding of the biological principles of the natural transformation process and its use as a tool for plant bioengineering. In the present study, we investigated whether the overexpression of A4-rolB gene could regulate two important processes, flavonoid biosynthesis and drought tolerance. In addition, we investigated some aspects of the possible machinery of the A4-rolB-induced changes in plant physiology, such as crosstalk of the major signalling systems. Based on the data obtained in this work, it can be presumed that constitutive overexpression of A4-rolB leads to the activation of the salicylic acid signalling system. An increase in flavonol accumulation and enhanced drought tolerance can be explained by the cooperative action of SA and ROS pathways.


Asunto(s)
Arabidopsis , Agrobacterium , Arabidopsis/genética , Sequías , Flavonoides/metabolismo , Flavonoles/metabolismo , Homeostasis , Hormonas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda