Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Neurobiol Learn Mem ; 179: 107398, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33540112

RESUMEN

Working memory (WM) is a limited-capacity system or set of processes that enables temporary storage and manipulation of information essential for complex cognitive processes. The WM performance is supported by a widespread neural network in which fronto-parietal functional connections have a pivotal role. Transcranial direct current stimulation (tDCS) is rapidly emerging as a promising tool for understanding the role of various cortical areas and their functional networks on cognitive performance. Here we comprehensively evaluated the effects of tDCS on WM by conducting three cross-over counterbalanced sham-controlled experiments in which we contrasted the effects and interactions of the anodal (i.e. facilitatory) tDCS across anterior-posterior (i.e. DLPFC vs PPC) and left-right (i.e. the lateralization) axes, and across online and offline protocols using both verbal and spatial WM (3-back) tasks as outcomes. In the offline protocols, left DLPFC stimulation affected neither verbal nor spatial WM, while left PPC stimulation increased spatial WM. When applied offline over right DLPFC, tDCS improved verbal WM task and marginally enhanced spatial WM; while when tDCS was applied over the right PPC, facilitatory effects were observed on verbal WM. In the online protocol, tDCS did not modulate WM regardless of the task modality or stimulation loci. In summary, the study did not replicate the left DLPFC tDCS effect on WM, found in some of the previous studies, but demonstrated positive effects of stimulation of the right DLPFC as well as PPC bilaterally. The observed effects varied across modality of the 3-back task, and tDCS protocol applied. The results of this study argue for moving towards targeting the lesser-explored stimulation sites within the fronto-parietal network, such as PPC, to gain a better understanding of the usefulness of tDCS for WM neuromodulation.


Asunto(s)
Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Memoria Espacial/fisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
2.
Sci Rep ; 12(1): 14091, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982223

RESUMEN

Associative memory (AM) is the ability to remember and retrieve multiple items bound together. Previous studies aiming to modulate AM by various transcranial electric stimulation (tES) techniques were inconclusive, although overall suggestive that tES could be a tool for AM enhancement. However, evidence from a direct comparison between different tES techniques is lacking. Here, in a sham-controlled cross-over experiment, we comparatively assessed the effects of three types of tES-anodal tDCS, theta-band transcranial alternating current stimulation (tACS), and theta-oscillatory tDCS (otDCS), delivered over the left posterior parietal cortex, during a short-term digit-color AM task with cued-recall. The effects were tested in 40 healthy young participants while both oscillatory tES were delivered at a previously determined individual theta frequency (4-8 Hz). All three active stimulations facilitated the overall AM performance, and no differences could be detected between them on direct comparison. However, unlike tDCS, the effects of which appeared to stem mainly from the facilitation of low-memory demand trials, both theta-modulated tACS and otDCS primarily promoted AM in high memory demand trials. Comparable yet differential effects of tDCS, theta tACS, and otDCS could be attributed to differences in their presumed modes of action.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Estudios Cruzados , Estimulación Eléctrica/métodos , Humanos , Memoria a Corto Plazo/fisiología , Recuerdo Mental , Lóbulo Parietal/fisiología , Estimulación Transcraneal de Corriente Directa/métodos
3.
Brain Sci ; 12(4)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35448003

RESUMEN

Associative memory (AM) is the ability to remember the relationship between previously unrelated items. AM is significantly affected by normal aging and neurodegenerative conditions, thus there is a growing interest in applying non-invasive brain stimulation (NIBS) techniques for AM enhancement. A growing body of studies identifies posterior parietal cortex (PPC) as the most promising cortical target for both transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) to modulate a cortico-hippocampal network that underlines AM. In that sense, theta frequency oscillatory tES protocols, targeted towards the hallmark oscillatory activity within the cortico-hippocampal network, are increasingly coming to prominence. To increase precision and effectiveness, the need for EEG guided individualization of the tES protocols is proposed. Here, we present the study protocol in which two types of personalized oscillatory tES-transcranial alternating current stimulation (tACS) and oscillatory transcranial direct current stimulation (otDCS), both frequency-modulated to the individual theta-band frequency (ITF), are compared to the non-oscillatory transcranial direct current stimulation (tDCS) and to the sham stimulation. The study has cross-over design with four tES conditions (tACS, otDCS, tDCS, sham), and the comprehensive set of neurophysiological (resting state EEG and AM-evoked EEG) and behavioral outcomes, including AM tasks (short-term associative memory, face-word, face-object, object-location), as well as measures of other cognitive functions (cognitive control, verbal fluency, and working memory).

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda