Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Biol Chem ; 295(1): 237-249, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31792031

RESUMEN

Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), which reduces levels of misfolded proteins. However, if ER homeostasis is not restored and the UPR remains chronically activated, cells undergo apoptosis. The UPR regulator, PKR-like endoplasmic reticulum kinase (PERK), plays an important role in promoting cell death when persistently activated; however, the underlying mechanisms are poorly understood. Here, we profiled the microRNA (miRNA) transcriptome in human cells exposed to ER stress and identified miRNAs that are selectively induced by PERK signaling. We found that expression of a PERK-induced miRNA, miR-483, promotes apoptosis in human cells. miR-483 induction was mediated by a transcription factor downstream of PERK, activating transcription factor 4 (ATF4), but not by the CHOP transcription factor. We identified the creatine kinase brain-type (CKB) gene, encoding an enzyme that maintains cellular ATP reserves through phosphocreatine production, as being repressed during the UPR and targeted by miR-483. We found that ER stress, selective PERK activation, and CKB knockdown all decrease cellular ATP levels, leading to increased vulnerability to ER stress-induced cell death. Our findings identify miR-483 as a downstream target of the PERK branch of the UPR. We propose that disruption of cellular ATP homeostasis through miR-483-mediated CKB silencing promotes ER stress-induced apoptosis.


Asunto(s)
Adenosina Trifosfato/metabolismo , MicroARNs/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Apoptosis , Forma BB de la Creatina-Quinasa/genética , Forma BB de la Creatina-Quinasa/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , MicroARNs/genética , eIF-2 Quinasa/genética
2.
Hum Mol Genet ; 27(22): 3951-3963, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30137327

RESUMEN

Tauopathies are neurodegenerative diseases characterized by tau protein pathology in the nervous system. EIF2AK3 (eukaryotic translation initiation factor 2 alpha kinase 3), also known as PERK (protein kinase R-like endoplasmic reticulum kinase), was identified by genome-wide association study as a genetic risk factor in several tauopathies. PERK is a key regulator of the Unfolded Protein Response (UPR), an intracellular signal transduction mechanism that protects cells from endoplasmic reticulum (ER) stress. PERK variants had previously been identified in Wolcott-Rallison Syndrome, a rare autosomal recessive metabolic disorder, and these variants completely abrogated the function of PERK's kinase domain or prevented PERK expression. In contrast, the PERK tauopathy risk variants were distinct from the Wolcott-Rallison variants and introduced missense alterations throughout the PERK protein. The function of PERK tauopathy variants and their effects on neurodegeneration are unknown. Here, we discovered that tauopathy-associated PERK alleles showed reduced signaling activity and increased PERK protein turnover compared to protective PERK alleles. We found that iPSC-derived neurons carrying PERK risk alleles were highly vulnerable to ER stress-induced injury with increased tau pathology. We found that chemical inhibition of PERK in human iPSC-derived neurons also increased neuronal cell death in response to ER stress. Our results indicate that tauopathy-associated PERK alleles are functional hypomorphs during the UPR. We propose that reduced PERK function leads to neurodegeneration by increasing neuronal vulnerability to ER stress-associated damage. In this view, therapies to enhance PERK signaling would benefit at-risk carriers of hypomorphic alleles.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Tauopatías/genética , eIF-2 Quinasa/genética , Alelos , Animales , Apoptosis/genética , Diferenciación Celular/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Retículo Endoplásmico/genética , Epífisis/anomalías , Epífisis/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica/genética , Humanos , Ratones , Mutación Missense/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Polimorfismo de Nucleótido Simple , Proteolisis , Transducción de Señal/genética , Tauopatías/patología , Respuesta de Proteína Desplegada/genética
3.
Alzheimers Dement ; 16(7): 1078-1094, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32627328

RESUMEN

Reducing the risk of dementia can halt the worldwide increase of affected people. The multifactorial and heterogeneous nature of late-onset dementia, including Alzheimer's disease (AD), indicates a potential impact of multidomain lifestyle interventions on risk reduction. The positive results of the landmark multidomain Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) support such an approach. The World-Wide FINGERS (WW-FINGERS), launched in 2017 and including over 25 countries, is the first global network of multidomain lifestyle intervention trials for dementia risk reduction and prevention. WW-FINGERS aims to adapt, test, and optimize the FINGER model to reduce risk across the spectrum of cognitive decline-from at-risk asymptomatic states to early symptomatic stages-in different geographical, cultural, and economic settings. WW-FINGERS aims to harmonize and adapt multidomain interventions across various countries and settings, to facilitate data sharing and analysis across studies, and to promote international joint initiatives to identify globally implementable and effective preventive strategies.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Demencia/prevención & control , Terapia por Ejercicio , Estilo de Vida , Ensayos Clínicos como Asunto , Cognición/fisiología , Humanos , Proyectos de Investigación , Conducta de Reducción del Riesgo
4.
Brain Behav Immun ; 80: 344-357, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30980950

RESUMEN

Aggregation of the microtubule-associated protein, tau, can lead to neurofibrillary tangle formation in neurons and glia which is the hallmark of tauopathy. The cellular damage induced by the formation of neurofibrillary tangles leads to neuroinflammation and consecutive neuronal death. However, detailed observation of transcriptomic changes under tauopathy together with the comparison of age-dependent progression of neuroinflammatory gene expressions mediated by tau overexpression is required. Employing RNA sequencing on PS19 transgenic mice that overexpress human mutant tau harboring the P301S mutation, we have examined the effects of age-dependent tau overexpression on transcriptomic changes of immune and inflammatory responses in the cerebral cortex. Compared to age-matched wild type control, P301S transgenic mice exhibit significant transcriptomic alterations. We have observed age-dependent neuroinflammatory gene expression changes in both wild type and P301S transgenic mice where tau overexpression further promoted the expression of neuroinflammatory genes in 10-month old P301S transgenic mice. Moreover, functional gene network analyses (gene ontology and pathway enrichment) and prospective target protein interactions predicted the potential involvement of multiple immune and inflammatory pathways that may contribute to tau-mediated neuronal pathology. Our current study on P301S transgenic mice model revealed for the first time, the differences of gene expression patterns in both early and late stage of tau pathology in cerebral cortex. Our analyses also revealed that tau overexpression alone induces multiple inflammatory and immune transcriptomic changes and may provide a roadmap to elucidate the targets of anti-inflammatory therapeutic strategy focused on tau pathology and related neurodegenerative diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Encefalitis/metabolismo , Transcriptoma , Proteínas tau/metabolismo , Factores de Edad , Animales , Corteza Cerebral/patología , Progresión de la Enfermedad , Encefalitis/genética , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones Transgénicos , Mutación , Fosforilación , Mapas de Interacción de Proteínas , Proteínas tau/genética
5.
Brain Behav Immun ; 75: 34-47, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30195027

RESUMEN

Stroke is the second leading cause of death in the world and a major cause of long-term disability. Recent evidence has provided insight into a newly described inflammatory mechanism that contributes to neuronal and glial cell death, and impaired neurological outcome following ischemic stroke - a form of sterile inflammation involving innate immune complexes termed inflammasomes. It has been established that inflammasome activation following ischemic stroke contributes to neuronal cell death, but little is known about inflammasome function and cell death in activated microglial cells following cerebral ischemia. Microglia are considered the resident immune cells that function as the primary immune defense in the brain. This study has comprehensively investigated the expression and activation of NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes in isolates of microglial cells subjected to simulated ischemic conditions and in the brain following ischemic stroke. Immunoblot analysis from culture media indicated microglial cells release inflammasome components and inflammasome activation-dependent pro-inflammatory cytokines following ischemic conditions. In addition, a functional role for NLRC4 inflammasomes was determined using siRNA knockdown of NLRC4 and pharmacological inhibitors of caspase-1 and -8 to target apoptotic and pyroptotic cell death in BV2 microglial cells under ischemic conditions. In summary, the present study provides evidence that the NLRC4 inflammasome complex mediates the inflammatory response, as well as apoptotic and pyroptotic cell death in microglial cells under in vitro and in vivo ischemic conditions.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Inflamasomas/metabolismo , Accidente Cerebrovascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/fisiología , Encéfalo/metabolismo , Isquemia Encefálica/inmunología , Isquemia Encefálica/fisiopatología , Proteínas de Unión al Calcio/fisiología , Caspasa 1/metabolismo , Muerte Celular , Inflamasomas/fisiología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuronas/metabolismo , Cultivo Primario de Células , Piroptosis/inmunología , Transducción de Señal/fisiología , Accidente Cerebrovascular/inmunología
6.
Bioessays ; 39(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28731260

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia that gradually disrupts the brain network to impair memory, language and cognition. While the amyloid hypothesis remains the leading proposed mechanism to explain AD pathophysiology, anti-amyloid therapeutic strategies have yet to translate into useful therapies, suggesting that amyloid ß-protein and its precursor, the amyloid precursor protein (APP) are but a part of the disease cascade. Further, risk of AD can be modulated by a number of factors, the most impactful being the ɛ4 isoform of apolipoprotein E (apoE). A recent study reported a novel isoform-dependent transcriptional regulation of APP by apoE. These interesting new results add to the myriad of mechanisms that have been proposed to explain how apoE4 enhances AD risk, highlighting the complexities of not only apoE and AD pathophysiology, but also of disease itself. Also see the video abstract here: https://youtu.be/yd14MBdPkCY.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Apolipoproteínas E/genética , Regulación de la Expresión Génica/genética , Isoformas de Proteínas/genética , Transcripción Genética/genética , Animales , Humanos
7.
J Neurosci ; 37(21): 5345-5365, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28450540

RESUMEN

The amyloid precursor protein (APP), a key player in Alzheimer's disease, belongs to the family of synaptic adhesion molecules (SAMs) due to its impact on synapse formation and synaptic plasticity. These functions are mediated by both the secreted APP ectodomain that acts as a neurotrophic factor and full-length APP forming trans-cellular dimers. Two homologs of APP exist in mammals: the APP like proteins APLP1 and APLP2, exhibiting functions that partly overlap with those of APP. Here we tested whether APLP1 and APLP2 also show features of SAMs. We found that all three family members were upregulated during postnatal development coinciding with synaptogenesis. We observed presynaptic and postsynaptic localization of all APP family members and could show that heterologous expression of APLP1 or APLP2 in non-neuronal cells induces presynaptic differentiation in contacting axons of cocultured neurons, similar to APP and other SAMs. Moreover, APP/APLPs all bind to synaptic-signaling molecules, such as MINT/X11. Furthermore, we report that aged APLP1 knock-out mice show impaired basal transmission and a reduced mEPSC frequency, likely resulting from reduced spine density. This demonstrates an essential nonredundant function of APLP1 at the synapse. Compared to APP, APLP1 exhibits increased trans-cellular binding and elevated cell-surface levels due to reduced endocytosis. In conclusion, our results establish that APLPs show typical features of SAMs and indicate that increased surface expression, as observed for APLP1, is essential for proper synapse formation in vitro and synapse maintenance in vivoSIGNIFICANCE STATEMENT According to the amyloid-cascade hypothesis, Alzheimer's disease is caused by the accumulation of Aß peptides derived from sequential cleavage of the amyloid precursor protein (APP) by ß-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Here we show that all mammalian APP family members (APP, APLP1, and APLP2) exhibit synaptogenic activity, involving trans-synaptic dimerization, similar to other synaptic cell adhesion molecules, such as Neuroligin/Neurexin. Importantly, our study revealed that the loss of APLP1, which is one of the major substrates of BACE1, causes reduced spine density in aged mice. Because some therapeutic interventions target APP processing (e.g., BACE inhibitors), those strategies may alter APP/APLP physiological function. This should be taken into account for the development of pharmaceutical treatments of Alzheimer's disease.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores , Sinapsis/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Unión al ADN , Espinas Dendríticas/patología , Espinas Dendríticas/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Unión al ARN , Sinapsis/fisiología
8.
Nature ; 482(7384): 216-20, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22278060

RESUMEN

Our understanding of Alzheimer's disease pathogenesis is currently limited by difficulties in obtaining live neurons from patients and the inability to model the sporadic form of the disease. It may be possible to overcome these challenges by reprogramming primary cells from patients into induced pluripotent stem cells (iPSCs). Here we reprogrammed primary fibroblasts from two patients with familial Alzheimer's disease, both caused by a duplication of the amyloid-ß precursor protein gene (APP; termed APP(Dp)), two with sporadic Alzheimer's disease (termed sAD1, sAD2) and two non-demented control individuals into iPSC lines. Neurons from differentiated cultures were purified with fluorescence-activated cell sorting and characterized. Purified cultures contained more than 90% neurons, clustered with fetal brain messenger RNA samples by microarray criteria, and could form functional synaptic contacts. Virtually all cells exhibited normal electrophysiological activity. Relative to controls, iPSC-derived, purified neurons from the two APP(Dp) patients and patient sAD2 exhibited significantly higher levels of the pathological markers amyloid-ß(1-40), phospho-tau(Thr 231) and active glycogen synthase kinase-3ß (aGSK-3ß). Neurons from APP(Dp) and sAD2 patients also accumulated large RAB5-positive early endosomes compared to controls. Treatment of purified neurons with ß-secretase inhibitors, but not γ-secretase inhibitors, caused significant reductions in phospho-Tau(Thr 231) and aGSK-3ß levels. These results suggest a direct relationship between APP proteolytic processing, but not amyloid-ß, in GSK-3ß activation and tau phosphorylation in human neurons. Additionally, we observed that neurons with the genome of one sAD patient exhibited the phenotypes seen in familial Alzheimer's disease samples. More generally, we demonstrate that iPSC technology can be used to observe phenotypes relevant to Alzheimer's disease, even though it can take decades for overt disease to manifest in patients.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Neuronas/metabolismo , Anciano de 80 o más Años , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Astrocitos/citología , Biomarcadores/metabolismo , Células Cultivadas , Reprogramación Celular , Técnicas de Cocultivo , Endosomas/metabolismo , Activación Enzimática , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/patología , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteolisis , Sinapsinas/metabolismo , Proteínas tau/metabolismo
9.
Annu Rev Pharmacol Toxicol ; 54: 381-405, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24392696

RESUMEN

Despite decades of intense research, therapeutics for Alzheimer's disease (AD) are still limited to symptomatic treatments that possess only short-term efficacy. Recently, several large-scale Phase III trials targeting amyloid-ß production or clearance have failed to show efficacy, leading to a reexamination of the amyloid hypothesis as well as highlighting the need to explore alternatives in both clinical testing strategies and drug discovery targets. In this review, we discuss therapeutics currently being tested in clinical trials and up-and-coming interventions that have shown promise in animal models, devoting attention to the mechanisms that may underlie their ability to influence disease progression and placing particular emphasis on tau therapeutics.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Terapia Molecular Dirigida , Amiloide/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Humanos , Resultado del Tratamiento
10.
Biochem Biophys Res Commun ; 478(1): 286-292, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27425247

RESUMEN

Epidemiologic studies indicate that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with a lower risk for developing Alzheimer's disease (AD). Because the primary mode of action of NSAIDs is to inhibit cyclooxygenase (COX) activity, it has been proposed that perturbed activity of COX-1 or COX-2 contributes to AD pathogenesis. To test the role of COX-1 or COX-2 in amyloid deposition and amyloid-associated inflammatory changes, we examined amyloid precursor protein (APP) transgenic mice in the context of either COX-1 or COX-2 deficiency. Our studies showed that loss of either COX-1 or COX-2 gene did not alter amyloid burden in brains of the APP transgenic mice. However, one marker of microglial activation (CD45) was decreased in brains of COX-1 deficient/APP animals and showed a strong trend in reduction in COX-2 deficient/APP animals. These results suggest that COX activity and amyloid deposition in brain are likely independent processes. Further, if NSAIDs do causally reduce the risks of AD, then our findings indicate that the mechanisms are likely not due primarily to their inhibition on COX or γ-secretase modulation activity, the latter reported recently after acute dosing of ibuprofen in humans and nonhuman primates.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Proteínas de la Membrana/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Ciclooxigenasa 1/genética , Ciclooxigenasa 2/genética , Femenino , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Distribución Tisular
11.
Acta Neuropathol ; 129(1): 1-19, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25287911

RESUMEN

The amyloid precursor protein (APP) has occupied a central position in Alzheimer's disease (AD) pathophysiology, in large part due to the seminal role of amyloid-ß peptide (Aß), a proteolytic fragment derived from APP. Although the contribution of Aß to AD pathogenesis is accepted by many in the research community, recent studies have unveiled a more complicated picture of APP's involvement in neurodegeneration in that other APP-derived fragments have been shown to exert pathological influences on neuronal function. However, not all APP-derived peptides are neurotoxic, and some even harbor neuroprotective effects. In this review, we will explore this complex picture by first discussing the pleiotropic effects of the major APP-derived peptides cleaved by multiple proteases, including soluble APP peptides (sAPPα, sAPPß), various C- and N-terminal fragments, p3, and APP intracellular domain fragments. In addition, we will highlight two interesting sequences within APP that likely contribute to this duality in APP function. First, it has been found that caspase-mediated cleavage of APP in the cytosolic region may release a cytotoxic peptide, C31, which plays a role in synapse loss and neuronal death. Second, recent studies have implicated the -YENPTY- motif in the cytoplasmic region as a domain that modulates several APP activities through phosphorylation and dephosphorylation of the first tyrosine residue. Thus, this review summarizes the current understanding of various APP proteolytic products and the interplay among them to gain deeper insights into the possible mechanisms underlying neurodegeneration and AD pathophysiology.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Caspasas/metabolismo , Humanos , Fragmentos de Péptidos/metabolismo
12.
Traffic ; 13(5): 681-93, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22309053

RESUMEN

The downstream targets of amyloid ß (Aß)-oligomers remain elusive. One hypothesis is that Aß-oligomers interrupt axonal transport. Although previous studies have demonstrated Aß-induced transport blockade, early effects of low-n soluble Aß-oligomers on axonal transport remain unclear. Furthermore, the cargo selectivity for such deficits (if any) or the specific effects of Aß on the motility kinetics of transported cargoes are also unknown. Toward this, we visualized axonal transport of vesicles in cultured hippocampal neurons treated with picomolar (pm) levels of cell-derived soluble Aß-oligomers. We examined select cargoes thought to move as distinct organelles and established imaging parameters that allow organelle tracking with consistency and high fidelity - analyzing all data in a blinded fashion. Aß-oligomers induced early and selective diminutions in velocities of synaptic cargoes but had no effect on mitochondrial motility, contrary to previous reports. These changes were N-methyl D-aspartate receptor/glycogen synthase kinase-3ß dependent and reversible upon washout of the oligomers. Cluster-mode analyses reveal selective attenuations in faster-moving synaptic vesicles, suggesting possible decreases in cargo/motor associations, and biochemical experiments implicate tau phosphorylation in the process. Collectively, the data provide a biological basis for Aß-induced axonal transport deficits.


Asunto(s)
Péptidos beta-Amiloides/química , Axones/metabolismo , Sinapsis/metabolismo , Animales , Transporte Biológico , Células CHO , Análisis por Conglomerados , Cricetinae , Hipocampo/citología , Hipocampo/metabolismo , Cinética , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo , Distribución Normal , Fosforilación , Solubilidad
13.
J Neurosci ; 33(39): 15596-602, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-24068826

RESUMEN

Brain-derived neurotrophic factor (BDNF) improves molecular, cellular, and behavioral measures of neural dysfunction in genetic models of Alzheimer's disease (Blurton-Jones et al., 2009; Nagahara et al., 2009). However, BDNF treatment after disease onset has not been reported to improve neuronal survival in these models. We now report prevention of neuronal loss with early life BDNF treatment in mutant mice expressing two amyloid precursor protein (APP) mutations associated with early-onset familial Alzheimer's disease. APP transgenic mice underwent lentiviral BDNF gene delivery into the entorhinal cortices at age 2 months and were examined 5 months later. BDNF-treated mice exhibited significant improvements in hippocampal-dependent contextual fear conditioning compared with control-treated APP mice (p < 0.05). Stereological analysis of entorhinal cortical cell number demonstrated ∼20% reductions in neuronal number in layers II-VI of the entorhinal cortex in untreated APP mutant mice compared with wild-type mice (p < 0.0001), and significant amelioration of cell loss by BDNF (p < 0.001). Moreover, BDNF gene delivery improved synaptophysin immunoreactivity in the entorhinal cortex and, through anterograde BDNF transport, in the hippocampus (p < 0.01). Notably, BDNF did not affect amyloid plaque numbers, indicating that direct amyloid reduction is not necessary to achieve significant neuroprotective benefits in mutant amyloid models of Alzheimer's disease.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Corteza Entorrinal/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Muerte Celular/genética , Condicionamiento Clásico , Miedo , Terapia Genética , Hipocampo/patología , Ratones , Ratones Transgénicos , Placa Amiloide/metabolismo , Transporte de Proteínas , Sinaptofisina/genética , Sinaptofisina/metabolismo
14.
Biochemistry ; 53(12): 1947-57, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24620716

RESUMEN

γ-Secretase catalyzes the final cleavage of the amyloid precursor protein (APP), resulting in the production of amyloid-ß (Aß) peptides with different carboxyl termini. Presenilin (PSEN) and amyloid precursor protein (APP) mutations linked to early onset familial Alzheimer's disease modify the profile of Aß isoforms generated, by altering both the initial γ-secretase cleavage site and subsequent processivity in a manner that leads to increased levels of the more amyloidogenic Aß42 and in some circumstances Aß43. Compounds termed γ-secretase modulators (GSMs) and inverse GSMs (iGSMs) can decrease and increase levels of Aß42, respectively. As GSMs lower the level of production of pathogenic forms of long Aß isoforms, they are of great interest as potential Alzheimer's disease therapeutics. The factors that regulate GSM modulation are not fully understood; however, there is a growing body of evidence that supports the hypothesis that GSM activity is influenced by the amino acid sequence of the γ-secretase substrate. We have evaluated whether mutations near the luminal border of the transmembrane domain (TMD) of APP alter the ability of both acidic, nonsteroidal anti-inflammatory drug-derived carboxylate and nonacidic, phenylimidazole-derived classes of GSMs and iGSMs to modulate γ-secretase cleavage. Our data show that point mutations can dramatically reduce the sensitivity to modulation of cleavage by GSMs but have weaker effects on iGSM activity. These studies support the concept that the effect of GSMs may be substrate selective; for APP, it is dependent on the amino acid sequence of the substrate near the junction of the extracellular domain and luminal segment of the TMD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Procesamiento Proteico-Postraduccional/genética , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/química , Animales , Células CHO , Cricetinae , Cricetulus , Regulación hacia Abajo/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual/genética , Especificidad por Sustrato/genética , Regulación hacia Arriba/genética
15.
Biochim Biophys Acta ; 1828(12): 2898-907, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23791707

RESUMEN

γ-Secretase is a fascinating, multi-subunit, intramembrane cleaving protease that is now being considered as a therapeutic target for a number of diseases. Potent, orally bioavailable γ-secretase inhibitors (GSIs) have been developed and tested in humans with Alzheimer's disease (AD) and cancer. Preclinical studies also suggest the therapeutic potential for GSIs in other disease conditions. However, due to inherent mechanism based-toxicity of non-selective inhibition of γ-secretase, clinical development of GSIs will require empirical testing with careful evaluation of benefit versus risk. In addition to GSIs, compounds referred to as γ-secretase modulators (GSMs) remain in development as AD therapeutics. GSMs do not inhibit γ-secretase, but modulate γ-secretase processivity and thereby shift the profile of the secreted amyloid ß peptides (Aß) peptides produced. Although GSMs are thought to have an inherently safe mechanism of action, their effects on substrates other than the amyloid ß protein precursor (APP) have not been extensively investigated. Herein, we will review the current state of development of GSIs and GSMs and explore pertinent biological and pharmacological questions pertaining to the use of these agents for select indications. This article is part of a Special Issue entitled: Intramembrane Proteases.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Neoplasias/enzimología , Inhibidores de Proteasas/química , Subunidades de Proteína/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/química , Precursor de Proteína beta-Amiloide/química , Sitios de Unión , Ensayos Clínicos como Asunto , Diseño de Fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de Proteasas/farmacología , Unión Proteica , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Proteolisis , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato
16.
FASEB J ; 27(9): 3775-85, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23716494

RESUMEN

Aggregation and accumulation of Aß42 play an initiating role in Alzheimer's disease (AD); thus, selective lowering of Aß42 by γ-secretase modulators (GSMs) remains a promising approach to AD therapy. Based on evidence suggesting that steroids may influence Aß production, we screened 170 steroids at 10 µM for effects on Aß42 secreted from human APP-overexpressing Chinese hamster ovary cells. Many acidic steroids lowered Aß42, whereas many nonacidic steroids actually raised Aß42. Studies on the more potent compounds showed that Aß42-lowering steroids were bonafide GSMs and Aß42-raising steroids were inverse GSMs. The most potent steroid GSM identified was 5ß-cholanic acid (EC50=5.7 µM; its endogenous analog lithocholic acid was virtually equipotent), and the most potent inverse GSM identified was 4-androsten-3-one-17ß-carboxylic acid ethyl ester (EC50=6.25 µM). In addition, we found that both estrogen and progesterone are weak inverse GSMs with further complex effects on APP processing. These data suggest that certain endogenous steroids may have the potential to act as GSMs and add to the evidence that cholesterol, cholesterol metabolites, and other steroids may play a role in modulating Aß production and thus risk for AD. They also indicate that acidic steroids might serve as potential therapeutic leads for drug optimization/development.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/efectos de los fármacos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Esteroides/química , Esteroides/farmacología , Animales , Células CHO , Línea Celular , Colesterol/farmacología , Cricetinae , Cricetulus , Ensayo de Inmunoadsorción Enzimática , Estrógenos/farmacología , Humanos , Espectrometría de Masas , Progesterona/farmacología
17.
Nature ; 453(7197): 925-9, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18548070

RESUMEN

Selective lowering of Abeta42 levels (the 42-residue isoform of the amyloid-beta peptide) with small-molecule gamma-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the gamma-secretase complex, but instead labelled the beta-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-beta peptide in human neuroglioma H4 cells. Substrate labelling was competed by other GSMs, and labelling of an APP gamma-secretase substrate was more efficient than a Notch substrate. GSM interaction was localized to residues 28-36 of amyloid-beta, a region critical for aggregation. We also demonstrate that compounds known to interact with this region of amyloid-beta act as GSMs, and some GSMs alter the production of cell-derived amyloid-beta oligomers. Furthermore, mutation of the GSM binding site in the APP alters the sensitivity of the substrate to GSMs. These findings indicate that substrate targeting by GSMs mechanistically links two therapeutic actions: alteration in Abeta42 production and inhibition of amyloid-beta aggregation, which may synergistically reduce amyloid-beta deposition in Alzheimer's disease. These data also demonstrate the existence and feasibility of 'substrate targeting' by small-molecule effectors of proteolytic enzymes, which if generally applicable may significantly broaden the current notion of 'druggable' targets.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/genética , Animales , Antiinflamatorios no Esteroideos/química , Sitios de Unión/efectos de los fármacos , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Femenino , Humanos , Ratones , Unión Proteica/efectos de los fármacos , Receptores Notch/genética , Receptores Notch/metabolismo , Especificidad por Sustrato/efectos de los fármacos
18.
Neuron ; 112(1): 124-140.e6, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37909036

RESUMEN

Progressive cognitive decline in Alzheimer's disease could either be caused by a spreading molecular pathology or by an initially focal pathology that causes aberrant neuronal activity in a larger network. To distinguish between these possibilities, we generated a mouse model with expression of mutant human amyloid precursor protein (APP) in only hippocampal CA3 cells. We found that performance in a hippocampus-dependent memory task was impaired in young adult and aged mutant mice. In both age groups, we then recorded from the CA1 region, which receives inputs from APP-expressing CA3 cells. We observed that theta oscillation frequency in CA1 was reduced along with disrupted relative timing of principal cells. Highly localized pathology limited to the presynaptic CA3 cells is thus sufficient to cause aberrant firing patterns in postsynaptic neuronal networks, which indicates that disease progression is not only from spreading pathology but also mediated by progressively advancing physiological dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Ratones , Humanos , Animales , Anciano , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Neuronas/fisiología , Enfermedad de Alzheimer/metabolismo , Sinapsis/fisiología , Ratones Transgénicos
19.
J Alzheimers Dis ; 99(4): 1317-1331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38788066

RESUMEN

Background: Emerging diagnostic modalities suggest that miRNA profiles within extracellular vesicles (EVs) isolated from peripheral blood specimens may provide a non-invasive diagnostic alternative for dementia and neurodegenerative disorders. Given that EVs confer a protective environment against miRNA enzymatic degradation, the miRNAs enriched in the EV fraction of blood samples could serve as more stable and clinically relevant biomarkers compared to those obtained from serum. Objective: To compare miRNAs isolated from EVs versus serum in blood taken from Alzheimer's disease (AD) dementia patients and control cohorts. Methods: We compared 25 AD patients to 34 individuals who exhibited no cognitive impairments (NCI). Subjects were Singapore residents with Chinese heritage. miRNAs purified from serum versus blood-derived EVs were analyzed for associations with AD dementia and medial temporal atrophy detected by magnetic resonance imaging. Results: Compared to serum-miRNAs, we identified almost twice as many EV-miRNAs associated with AD dementia, and they also correlated more significantly with medial temporal atrophy, a neuroimaging marker of AD-brain pathology. We further developed combination panels of serum-miRNAs and EV-miRNAs with improved performance in identifying AD dementia. Dominant in both panels was miRNA-1290. Conclusions: This data indicates that miRNA profiling from EVs offers diagnostic superiority. This underscores the role of EVs as vectors harboring prognostic biomarkers for neurodegenerative disorders and suggests their potential in yielding novel biomarkers for AD diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Biomarcadores , Vesículas Extracelulares , MicroARNs , Lóbulo Temporal , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/sangre , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroARNs/sangre , MicroARNs/genética , Masculino , Femenino , Anciano , Biomarcadores/sangre , Lóbulo Temporal/patología , Lóbulo Temporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Persona de Mediana Edad , Anciano de 80 o más Años
20.
J Neurol Neurosurg Psychiatry ; 84(6): 686-92, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23385846

RESUMEN

OBJECTIVE: To study the prevalence of and associated factors for cognitive impairment and dementia in community dwelling Chinese from Singapore. METHODS: This study includes Chinese subjects from the Epidemiology of Dementia in Singapore (EDIS) study, aged ≥60 years, who underwent comprehensive examinations, including cognitive screening with the locally validated Abbreviated Mental Test and Progressive Forgetfulness Questionnaire. Screen positive participants subsequently underwent extensive neuropsychological testing and cerebral MRI. Cognitive impairment no dementia (CIND) and dementia were diagnosed according to internationally accepted criteria. The prevalence of cognitive impairment and dementia were computed per 5 year age categories and gender. To examine the relationship between baseline associated factors and cognitive impairment, we used logistic regression models to compute odd ratios with 95% CI. RESULTS: 1538 Chinese subjects, aged ≥60 years, underwent cognitive screening: 171 (15.2%) were diagnosed with any cognitive impairment, of whom 84 were CIND mild, 80 CIND moderate and seven had dementia. The overall age adjusted prevalence of CIND mild was 7.2%; CIND moderate/dementia was 7.9%. The prevalence increased with age, from 5.9% in those aged 60-64 years to 31.3% in those aged 75-79 years and 44.1% in those aged ≥80 years. Multivariate analysis revealed age, diabetes and hyperlipidaemia to be independently associated with cognitive impairment. CONCLUSIONS: In present study, the overall prevalence of cognitive impairment and dementia in Chinese was 15.2%, which is in the same range as the prevalence reported in Caucasian and other Asian populations.


Asunto(s)
Disfunción Cognitiva/epidemiología , Demencia/epidemiología , Factores de Edad , Anciano , Anciano de 80 o más Años , Encéfalo/patología , China/etnología , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/epidemiología , Trastornos del Conocimiento/patología , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/patología , Demencia/diagnóstico , Demencia/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Pruebas Neuropsicológicas , Prevalencia , Factores Sexuales , Singapur/epidemiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda