Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Rev Neurosci ; 24(11): 693-710, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37794121

RESUMEN

Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges.


Asunto(s)
Inteligencia Artificial , Neurociencias , Animales , Humanos , Redes Neurales de la Computación
2.
Psychol Med ; : 1-9, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39247942

RESUMEN

This position paper by the international IMMERSE consortium reviews the evidence of a digital mental health solution based on Experience Sampling Methodology (ESM) for advancing person-centered mental health care and outlines a research agenda for implementing innovative digital mental health tools into routine clinical practice. ESM is a structured diary technique recording real-time self-report data about the current mental state using a mobile application. We will review how ESM may contribute to (1) service user engagement and empowerment, (2) self-management and recovery, (3) goal direction in clinical assessment and management of care, and (4) shared decision-making. However, despite the evidence demonstrating the value of ESM-based approaches in enhancing person-centered mental health care, it is hardly integrated into clinical practice. Therefore, we propose a global research agenda for implementing ESM in routine mental health care addressing six key challenges: (1) the motivation and ability of service users to adhere to the ESM monitoring, reporting and feedback, (2) the motivation and competence of clinicians in routine healthcare delivery settings to integrate ESM in the workflow, (3) the technical requirements and (4) governance requirements for integrating these data in the clinical workflow, (5) the financial and competence related resources related to IT-infrastructure and clinician time, and (6) implementation studies that build the evidence-base. While focused on ESM, the research agenda holds broader implications for implementing digital innovations in mental health. This paper calls for a shift in focus from developing new digital interventions to overcoming implementation barriers, essential for achieving a true transformation toward person-centered care in mental health.

3.
BMC Psychiatry ; 24(1): 465, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915006

RESUMEN

BACKGROUND: Recent years have seen a growing interest in the use of digital tools for delivering person-centred mental health care. Experience Sampling Methodology (ESM), a structured diary technique for capturing moment-to-moment variation in experience and behaviour in service users' daily life, reflects a particularly promising avenue for implementing a person-centred approach. While there is evidence on the effectiveness of ESM-based monitoring, uptake in routine mental health care remains limited. The overarching aim of this hybrid effectiveness-implementation study is to investigate, in detail, reach, effectiveness, adoption, implementation, and maintenance as well as contextual factors, processes, and costs of implementing ESM-based monitoring, reporting, and feedback into routine mental health care in four European countries (i.e., Belgium, Germany, Scotland, Slovakia). METHODS: In this hybrid effectiveness-implementation study, a parallel-group, assessor-blind, multi-centre cluster randomized controlled trial (cRCT) will be conducted, combined with a process and economic evaluation. In the cRCT, 24 clinical units (as the cluster and unit of randomization) at eight sites in four European countries will be randomly allocated using an unbalanced 2:1 ratio to one of two conditions: (a) the experimental condition, in which participants receive a Digital Mobile Mental Health intervention (DMMH) and other implementation strategies in addition to treatment as usual (TAU) or (b) the control condition, in which service users are provided with TAU. Outcome data in service users and clinicians will be collected at four time points: at baseline (t0), 2-month post-baseline (t1), 6-month post-baseline (t2), and 12-month post-baseline (t3). The primary outcome will be patient-reported service engagement assessed with the service attachment questionnaire at 2-month post-baseline. The process and economic evaluation will provide in-depth insights into in-vivo context-mechanism-outcome configurations and economic costs of the DMMH and other implementation strategies in routine care, respectively. DISCUSSION: If this trial provides evidence on reach, effectiveness, adoption, implementation and maintenance of implementing ESM-based monitoring, reporting, and feedback, it will form the basis for establishing its public health impact and has significant potential to bridge the research-to-practice gap and contribute to swifter ecological translation of digital innovations to real-world delivery in routine mental health care. TRIAL REGISTRATION: ISRCTN15109760 (ISRCTN registry, date: 03/08/2022).


Asunto(s)
Servicios de Salud Mental , Humanos , Servicios de Salud Mental/economía , Alemania , Bélgica , Eslovaquia , Trastornos Mentales/terapia , Trastornos Mentales/economía , Evaluación Ecológica Momentánea , Europa (Continente) , Análisis Costo-Beneficio/métodos
4.
Addict Biol ; 29(7): e13419, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949209

RESUMEN

Substance use disorders (SUDs) are seen as a continuum ranging from goal-directed and hedonic drug use to loss of control over drug intake with aversive consequences for mental and physical health and social functioning. The main goals of our interdisciplinary German collaborative research centre on Losing and Regaining Control over Drug Intake (ReCoDe) are (i) to study triggers (drug cues, stressors, drug priming) and modifying factors (age, gender, physical activity, cognitive functions, childhood adversity, social factors, such as loneliness and social contact/interaction) that longitudinally modulate the trajectories of losing and regaining control over drug consumption under real-life conditions. (ii) To study underlying behavioural, cognitive and neurobiological mechanisms of disease trajectories and drug-related behaviours and (iii) to provide non-invasive mechanism-based interventions. These goals are achieved by: (A) using innovative mHealth (mobile health) tools to longitudinally monitor the effects of triggers and modifying factors on drug consumption patterns in real life in a cohort of 900 patients with alcohol use disorder. This approach will be complemented by animal models of addiction with 24/7 automated behavioural monitoring across an entire disease trajectory; i.e. from a naïve state to a drug-taking state to an addiction or resilience-like state. (B) The identification and, if applicable, computational modelling of key molecular, neurobiological and psychological mechanisms (e.g., reduced cognitive flexibility) mediating the effects of such triggers and modifying factors on disease trajectories. (C) Developing and testing non-invasive interventions (e.g., Just-In-Time-Adaptive-Interventions (JITAIs), various non-invasive brain stimulations (NIBS), individualized physical activity) that specifically target the underlying mechanisms for regaining control over drug intake. Here, we will report on the most important results of the first funding period and outline our future research strategy.


Asunto(s)
Trastornos Relacionados con Sustancias , Humanos , Animales , Alemania , Conducta Adictiva , Alcoholismo
5.
Hum Brain Mapp ; 43(2): 681-699, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655259

RESUMEN

Emerging studies corroborate the importance of neuroimaging biomarkers and machine learning to improve diagnostic classification of amyotrophic lateral sclerosis (ALS). While most studies focus on structural data, recent studies assessing functional connectivity between brain regions by linear methods highlight the role of brain function. These studies have yet to be combined with brain structure and nonlinear functional features. We investigate the role of linear and nonlinear functional brain features, and the benefit of combining brain structure and function for ALS classification. ALS patients (N = 97) and healthy controls (N = 59) underwent structural and functional resting state magnetic resonance imaging. Based on key hubs of resting state networks, we defined three feature sets comprising brain volume, resting state functional connectivity (rsFC), as well as (nonlinear) resting state dynamics assessed via recurrent neural networks. Unimodal and multimodal random forest classifiers were built to classify ALS. Out-of-sample prediction errors were assessed via five-fold cross-validation. Unimodal classifiers achieved a classification accuracy of 56.35-61.66%. Multimodal classifiers outperformed unimodal classifiers achieving accuracies of 62.85-66.82%. Evaluating the ranking of individual features' importance scores across all classifiers revealed that rsFC features were most dominant in classification. While univariate analyses revealed reduced rsFC in ALS patients, functional features more generally indicated deficits in information integration across resting state brain networks in ALS. The present work undermines that combining brain structure and function provides an additional benefit to diagnostic classification, as indicated by multimodal classifiers, while emphasizing the importance of capturing both linear and nonlinear functional brain properties to identify discriminative biomarkers of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Encéfalo , Conectoma , Aprendizaje Profundo , Imagen por Resonancia Magnética , Red Nerviosa , Adulto , Anciano , Esclerosis Amiotrófica Lateral/clasificación , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Conectoma/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Red Nerviosa/fisiopatología
6.
Mol Psychiatry ; 24(11): 1583-1598, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30770893

RESUMEN

Machine and deep learning methods, today's core of artificial intelligence, have been applied with increasing success and impact in many commercial and research settings. They are powerful tools for large scale data analysis, prediction and classification, especially in very data-rich environments ("big data"), and have started to find their way into medical applications. Here we will first give an overview of machine learning methods, with a focus on deep and recurrent neural networks, their relation to statistics, and the core principles behind them. We will then discuss and review directions along which (deep) neural networks can be, or already have been, applied in the context of psychiatry, and will try to delineate their future potential in this area. We will also comment on an emerging area that so far has been much less well explored: by embedding semantically interpretable computational models of brain dynamics or behavior into a statistical machine learning context, insights into dysfunction beyond mere prediction and classification may be gained. Especially this marriage of computational models with statistical inference may offer insights into neural and behavioral mechanisms that could open completely novel avenues for psychiatric treatment.


Asunto(s)
Aprendizaje Automático/tendencias , Redes Neurales de la Computación , Psiquiatría/métodos , Algoritmos , Inteligencia Artificial/tendencias , Encéfalo , Aprendizaje Profundo , Humanos , Trastornos Mentales/fisiopatología , Psiquiatría/tendencias
7.
PLoS Biol ; 15(6): e2000936, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28604818

RESUMEN

Behavioral experiments are usually designed to tap into a specific cognitive function, but animals may solve a given task through a variety of different and individual behavioral strategies, some of them not foreseen by the experimenter. Animal learning may therefore be seen more as the process of selecting among, and adapting, potential behavioral policies, rather than mere strengthening of associative links. Calcium influx through high-voltage-gated Ca2+ channels is central to synaptic plasticity, and altered expression of Cav1.2 channels and the CACNA1C gene have been associated with severe learning deficits and psychiatric disorders. Given this, we were interested in how specifically a selective functional ablation of the Cacna1c gene would modulate the learning process. Using a detailed, individual-level analysis of learning on an operant cue discrimination task in terms of behavioral strategies, combined with Bayesian selection among computational models estimated from the empirical data, we show that a Cacna1c knockout does not impair learning in general but has a much more specific effect: the majority of Cacna1c knockout mice still managed to increase reward feedback across trials but did so by adapting an outcome-based strategy, while the majority of matched controls adopted the experimentally intended cue-association rule. Our results thus point to a quite specific role of a single gene in learning and highlight that much more mechanistic insight could be gained by examining response patterns in terms of a larger repertoire of potential behavioral strategies. The results may also have clinical implications for treating psychiatric disorders.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Condicionamiento Operante , Aprendizaje Discriminativo , Conducta Exploratoria , Modelos Psicológicos , Algoritmos , Animales , Teorema de Bayes , Conducta Animal , Canales de Calcio Tipo L/genética , Conducta de Elección , Biología Computacional , Señales (Psicología) , Retroalimentación Psicológica , Heurística , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Refuerzo en Psicología , Recompensa
8.
PLoS Comput Biol ; 15(8): e1007263, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31433810

RESUMEN

A major tenet in theoretical neuroscience is that cognitive and behavioral processes are ultimately implemented in terms of the neural system dynamics. Accordingly, a major aim for the analysis of neurophysiological measurements should lie in the identification of the computational dynamics underlying task processing. Here we advance a state space model (SSM) based on generative piecewise-linear recurrent neural networks (PLRNN) to assess dynamics from neuroimaging data. In contrast to many other nonlinear time series models which have been proposed for reconstructing latent dynamics, our model is easily interpretable in neural terms, amenable to systematic dynamical systems analysis of the resulting set of equations, and can straightforwardly be transformed into an equivalent continuous-time dynamical system. The major contributions of this paper are the introduction of a new observation model suitable for functional magnetic resonance imaging (fMRI) coupled to the latent PLRNN, an efficient stepwise training procedure that forces the latent model to capture the 'true' underlying dynamics rather than just fitting (or predicting) the observations, and of an empirical measure based on the Kullback-Leibler divergence to evaluate from empirical time series how well this goal of approximating the underlying dynamics has been achieved. We validate and illustrate the power of our approach on simulated 'ground-truth' dynamical systems as well as on experimental fMRI time series, and demonstrate that the learnt dynamics harbors task-related nonlinear structure that a linear dynamical model fails to capture. Given that fMRI is one of the most common techniques for measuring brain activity non-invasively in human subjects, this approach may provide a novel step toward analyzing aberrant (nonlinear) dynamics for clinical assessment or neuroscientific research.


Asunto(s)
Imagen por Resonancia Magnética/estadística & datos numéricos , Modelos Neurológicos , Red Nerviosa/fisiología , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Biología Computacional , Neuroimagen Funcional/estadística & datos numéricos , Humanos , Redes Neurales de la Computación , Dinámicas no Lineales , Análisis de Sistemas
9.
Addict Biol ; 25(2): e12866, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31859437

RESUMEN

One of the major risk factors for global death and disability is alcohol, tobacco, and illicit drug use. While there is increasing knowledge with respect to individual factors promoting the initiation and maintenance of substance use disorders (SUDs), disease trajectories involved in losing and regaining control over drug intake (ReCoDe) are still not well described. Our newly formed German Collaborative Research Centre (CRC) on ReCoDe has an interdisciplinary approach funded by the German Research Foundation (DFG) with a 12-year perspective. The main goals of our research consortium are (i) to identify triggers and modifying factors that longitudinally modulate the trajectories of losing and regaining control over drug consumption in real life, (ii) to study underlying behavioral, cognitive, and neurobiological mechanisms, and (iii) to implicate mechanism-based interventions. These goals will be achieved by: (i) using mobile health (m-health) tools to longitudinally monitor the effects of triggers (drug cues, stressors, and priming doses) and modify factors (eg, age, gender, physical activity, and cognitive control) on drug consumption patterns in real-life conditions and in animal models of addiction; (ii) the identification and computational modeling of key mechanisms mediating the effects of such triggers and modifying factors on goal-directed, habitual, and compulsive aspects of behavior from human studies and animal models; and (iii) developing and testing interventions that specifically target the underlying mechanisms for regaining control over drug intake.


Asunto(s)
Terapia Conductista/métodos , Investigación Biomédica/métodos , Señales (Psicología) , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/terapia , Telemedicina/métodos , Animales , Conducta Cooperativa , Modelos Animales de Enfermedad , Alemania , Humanos , Recurrencia , Trastornos Relacionados con Sustancias/psicología
10.
Psychol Med ; 48(13): 2223-2234, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29282161

RESUMEN

BACKGROUND: Fear responses are particularly intense and persistent in post-traumatic stress disorder (PTSD), and can be evoked by unspecific cues that resemble the original traumatic event. Overgeneralisation of fear might be one of the underlying mechanisms. We investigated the generalisation and discrimination of fear in individuals with and without PTSD related to prolonged childhood maltreatment. METHODS: Sixty trauma-exposed women with (N = 30) and without (N = 30) PTSD and 30 healthy control participants (HC) underwent a fear conditioning and generalisation paradigm. In a contingency learning procedure, one of two circles of different sizes was associated with an electrical shock (danger cue), while the other circle represented a safety cue. During generalisation testing, online risk ratings, reaction times and fear-potentiated startle were measured in response to safety and danger cues as well as to eight generalisation stimuli, i.e. circles of parametrically varying size creating a continuum of similarity between the danger and safety cue. RESULTS: The increase in reaction times from the safety cue across the different generalisation classes to the danger cue was less pronounced in PTSD compared with HC. Moreover, PTSD participants expected higher risk of an aversive event independent of stimulus types and task. CONCLUSIONS: Alterations in generalisation constitute one part of fear memory alterations in PTSD. Neither the accuracy of a risk judgement nor the strength of the induced fear was affected. Instead, processing times as an index of uncertainty during risk judgements suggested a reduced differentiation between safety and threat in PTSD.


Asunto(s)
Adultos Sobrevivientes del Maltrato a los Niños , Experiencias Adversas de la Infancia , Condicionamiento Clásico/fisiología , Miedo/fisiología , Generalización Psicológica/fisiología , Trauma Psicológico/fisiopatología , Reflejo de Sobresalto/fisiología , Trastornos por Estrés Postraumático/fisiopatología , Adulto , Femenino , Humanos , Seguridad , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda