RESUMEN
Magnetic resonance spectroscopy (MRS) is the primary method that can measure the levels of metabolites in the brain in vivo. To achieve its potential in clinical usage, the reliability of the measurement requires further articulation. Although there are many studies that investigate the reliability of gamma-aminobutyric acid (GABA), comparatively few studies have investigated the reliability of other brain metabolites, such as glutamate (Glu), N-acetyl-aspartate (NAA), creatine (Cr), phosphocreatine (PCr), or myo-inositol (mI), which all play a significant role in brain development and functions. In addition, previous studies which predominately used only two measurements (two data points) failed to provide the details of the time effect (e.g., time-of-day) on MRS measurement within subjects. Therefore, in this study, MRS data located in the anterior cingulate cortex (ACC) were repeatedly recorded across 1 year leading to at least 25 sessions for each subject with the aim of exploring the variability of other metabolites by using the index coefficient of variability (CV); the smaller the CV, the more reliable the measurements. We found that the metabolites of NAA, tNAA, and tCr showed the smallest CVs (between 1.43% and 4.90%), and the metabolites of Glu, Glx, mI, and tCho showed modest CVs (between 4.26% and 7.89%). Furthermore, we found that the concentration reference of the ratio to water results in smaller CVs compared to the ratio to tCr. In addition, we did not find any time-of-day effect on the MRS measurements. Collectively, the results of this study indicate that the MRS measurement is reasonably reliable in quantifying the levels of metabolites.
Asunto(s)
Encéfalo , Giro del Cíngulo , Humanos , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Reproducibilidad de los Resultados , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Creatina/metabolismo , Inositol/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Ácido Aspártico/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Colina/metabolismoRESUMEN
Ageing is a heterogeneous multisystem process involving different rates of decline in physiological integrity across biological systems. The current study dissects the unique and common variance across body and brain health indicators and parses inter-individual heterogeneity in the multisystem ageing process. Using machine-learning regression models on the UK Biobank data set (N = 32,593, age range 44.6-82.3, mean age 64.1 years), we first estimated tissue-specific brain age for white and gray matter based on diffusion and T1-weighted magnetic resonance imaging (MRI) data, respectively. Next, bodily health traits, including cardiometabolic, anthropometric, and body composition measures of adipose and muscle tissue from bioimpedance and body MRI, were combined to predict 'body age'. The results showed that the body age model demonstrated comparable age prediction accuracy to models trained solely on brain MRI data. The correlation between body age and brain age predictions was 0.62 for the T1 and 0.64 for the diffusion-based model, indicating a degree of unique variance in brain and bodily ageing processes. Bayesian multilevel modelling carried out to quantify the associations between health traits and predicted age discrepancies showed that higher systolic blood pressure and higher muscle-fat infiltration were related to older-appearing body age compared to brain age. Conversely, higher hand-grip strength and muscle volume were related to a younger-appearing body age. Our findings corroborate the common notion of a close connection between somatic and brain health. However, they also suggest that health traits may differentially influence age predictions beyond what is captured by the brain imaging data, potentially contributing to heterogeneous ageing rates across biological systems and individuals.
Asunto(s)
Envejecimiento , Aprendizaje Automático , Imagen por Resonancia Magnética , Humanos , Persona de Mediana Edad , Anciano , Adulto , Masculino , Envejecimiento/fisiología , Femenino , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Composición Corporal/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Teorema de BayesRESUMEN
Unveiling the details of white matter (WM) maturation throughout ageing is a fundamental question for understanding the ageing brain. In an extensive comparison of brain age predictions and age-associations of WM features from different diffusion approaches, we analyzed UK Biobank diffusion magnetic resonance imaging (dMRI) data across midlife and older age (N = 35,749, 44.6-82.8 years of age). Conventional and advanced dMRI approaches were consistent in predicting brain age. WM-age associations indicate a steady microstructure degeneration with increasing age from midlife to older ages. Brain age was estimated best when combining diffusion approaches, showing different aspects of WM contributing to brain age. Fornix was found as the central region for brain age predictions across diffusion approaches in complement to forceps minor as another important region. These regions exhibited a general pattern of positive associations with age for intra axonal water fractions, axial, radial diffusivities, and negative relationships with age for mean diffusivities, fractional anisotropy, kurtosis. We encourage the application of multiple dMRI approaches for detailed insights into WM, and the further investigation of fornix and forceps as potential biomarkers of brain age and ageing.
Asunto(s)
Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Envejecimiento , Cuerpo CallosoRESUMEN
Background: During the course of adulthood and aging, white matter (WM) structure and organization are characterized by slow degradation processes such as demyelination and shrinkage. An acceleration of such aging processes has been linked to the development of a range of diseases. Thus, an accurate description of healthy brain maturation, particularly in terms of WM features, is fundamental to the understanding of aging. Methods: We used longitudinal diffusion magnetic resonance imaging to provide an overview of WM changes at different spatial and temporal scales in the UK Biobank (UKB) (n = 2678; agescan 1 = 62.38 ± 7.23 years; agescan 2 = 64.81 ± 7.1 years). To examine the genetic overlap between WM structure and common clinical conditions, we tested the associations between WM structure and polygenic risk scores for the most common neurodegenerative disorder, Alzheimer's disease, and common psychiatric disorders (unipolar and bipolar depression, anxiety, obsessive-compulsive disorder, autism, schizophrenia, attention-deficit/hyperactivity disorder) in longitudinal (n = 2329) and cross-sectional (n = 31,056) UKB validation data. Results: Our findings indicate spatially distributed WM changes across the brain, as well as distributed associations of polygenic risk scores with WM. Importantly, brain longitudinal changes reflected genetic risk for disorder development better than the utilized cross-sectional measures, with regional differences giving more specific insights into gene-brain change associations than global averages. Conclusions: We extend recent findings by providing a detailed overview of WM microstructure degeneration on different spatial levels, helping to understand fundamental brain aging processes. Further longitudinal research is warranted to examine aging-related gene-brain associations.
In their study, Korbmacher et al. benchmark healthy aging processes in the brain's white matter. Findings of degrading white matter at higher ages were consistent with recent cross-sectional and longitudinal findings, particularly outlining changes in ventricle-near and cerebellar white matter. Degenerative processes were also found to accelerate at a higher age. Finally, the polygenic risk to develop psychiatric and neurodegenerative disorders was weakly associated with the white matter change in the otherwise healthily aging participants.
RESUMEN
The human brain demonstrates structural and functional asymmetries which have implications for ageing and mental and neurological disease development. We used a set of magnetic resonance imaging (MRI) metrics derived from structural and diffusion MRI data in N=48,040 UK Biobank participants to evaluate age-related differences in brain asymmetry. Most regional grey and white matter metrics presented asymmetry, which were higher later in life. Informed by these results, we conducted hemispheric brain age (HBA) predictions from left/right multimodal MRI metrics. HBA was concordant to conventional brain age predictions, using metrics from both hemispheres, but offers a supplemental general marker of brain asymmetry when setting left/right HBA into relationship with each other. In contrast to WM brain asymmetries, left/right discrepancies in HBA are lower at higher ages. Our findings outline various sex-specific differences, particularly important for brain age estimates, and the value of further investigating the role of brain asymmetries in brain ageing and disease development.
Asunto(s)
Lateralidad Funcional , Sustancia Blanca , Masculino , Femenino , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patologíaRESUMEN
Study preregistration has become increasingly popular in psychology, but its potential to restrict researcher degrees of freedom has not yet been empirically verified. We used an extensive protocol to assess the producibility (i.e., the degree to which a study can be properly conducted based on the available information) of preregistrations and the consistency between preregistrations and their corresponding papers for 300 psychology studies. We found that preregistrations often lack methodological details and that undisclosed deviations from preregistered plans are frequent. These results highlight that biases due to researcher degrees of freedom remain possible in many preregistered studies. More comprehensive registration templates typically yielded more producible preregistrations. We did not find that the producibility and consistency of preregistrations differed over time or between original and replication studies. Furthermore, we found that operationalizations of variables were generally preregistered more producible and consistently than other study parts. Inconsistencies between preregistrations and published studies were mainly encountered for data collection procedures, statistical models, and exclusion criteria. Our results indicate that, to unlock the full potential of preregistration, researchers in psychology should aim to write more producible preregistrations, adhere to these preregistrations more faithfully, and more transparently report any deviations from their preregistrations. This could be facilitated by training and education to improve preregistration skills, as well as the development of more comprehensive templates. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
RESUMEN
INTRODUCTION: Brain age, the estimation of a person's age from magnetic resonance imaging (MRI) parameters, has been used as a general indicator of health. The marker requires however further validation for application in clinical contexts. Here, we show how brain age predictions perform for the same individual at various time points and validate our findings with age-matched healthy controls. METHODS: We used densely sampled T1-weighted MRI data from four individuals (from two densely sampled datasets) to observe how brain age corresponds to age and is influenced by acquisition and quality parameters. For validation, we used two cross-sectional datasets. Brain age was predicted by a pretrained deep learning model. RESULTS: We found small within-subject correlations between age and brain age. We also found evidence for the influence of field strength on brain age which replicated in the cross-sectional validation data and inconclusive effects of scan quality. CONCLUSION: The absence of maturation effects for the age range in the presented sample, brain age model bias (including training age distribution and field strength), and model error are potential reasons for small relationships between age and brain age in densely sampled longitudinal data. Clinical applications of brain age models should consider of the possibility of apparent biases caused by variation in the data acquisition process.
RESUMEN
Brain age refers to age predicted by brain features. Brain age has previously been associated with various health and disease outcomes and suggested as a potential biomarker of general health. Few previous studies have systematically assessed brain age variability derived from single and multi-shell diffusion magnetic resonance imaging data. Here, we present multivariate models of brain age derived from various diffusion approaches and how they relate to bio-psycho-social variables within the domains of sociodemographic, cognitive, life-satisfaction, as well as health and lifestyle factors in midlife to old age (N = 35,749, 44.6-82.8 years of age). Bio-psycho-social factors could uniquely explain a small proportion of the brain age variance, in a similar pattern across diffusion approaches: cognitive scores, life satisfaction, health and lifestyle factors adding to the variance explained, but not socio-demographics. Consistent brain age associations across models were found for waist-to-hip ratio, diabetes, hypertension, smoking, matrix puzzles solving, and job and health satisfaction and perception. Furthermore, we found large variability in sex and ethnicity group differences in brain age. Our results show that brain age cannot be sufficiently explained by bio-psycho-social variables alone. However, the observed associations suggest to adjust for sex, ethnicity, cognitive factors, as well as health and lifestyle factors, and to observe bio-psycho-social factor interactions' influence on brain age in future studies.
RESUMEN
The emergence of large-scale replication projects yielding successful rates substantially lower than expected caused the behavioural, cognitive, and social sciences to experience a so-called 'replication crisis'. In this Perspective, we reframe this 'crisis' through the lens of a credibility revolution, focusing on positive structural, procedural and community-driven changes. Second, we outline a path to expand ongoing advances and improvements. The credibility revolution has been an impetus to several substantive changes which will have a positive, long-term impact on our research environment.
RESUMEN
In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data.
Asunto(s)
COVID-19 , Humanos , Adaptación Psicológica , Conductas Relacionadas con la Salud , Pandemias , Encuestas y CuestionariosRESUMEN
Our understanding of the cognitive functions of the human brain has tremendously benefited from the population functional Magnetic Resonance Imaging (fMRI) studies in the last three decades. The reliability and replicability of the fMRI results, however, have been recently questioned, which has been named the replication crisis. Sufficient statistical power is fundamental to alleviate the crisis, by either "going big," leveraging big datasets, or by "going small," densely scanning several participants. Here we reported a "going small" project implemented in our department, the Bergen breakfast scanning club (BBSC) project, in which three participants were intensively scanned across a year. It is expected this kind of new data collection method can provide novel insights into the variability of brain networks, facilitate research designs and inference, and ultimately lead to the improvement of the reliability of the fMRI results.
RESUMEN
Romantic mouth-to-mouth kissing is culturally widespread, although not a human universal, and may play a functional role in assessing partner health and maintaining long-term pair bonds. Use and appreciation of kissing may therefore vary according to whether the environment places a premium on good health and partner investment. Here, we test for cultural variation (13 countries from six continents) in these behaviours/attitudes according to national health (historical pathogen prevalence) and both absolute (GDP) and relative wealth (GINI). Our data reveal that kissing is valued more in established relationships than it is valued during courtship. Also, consistent with the pair bonding hypothesis of the function of romantic kissing, relative poverty (income inequality) predicts frequency of kissing across romantic relationships. When aggregated, the predicted relationship between income inequality and kissing frequency (r = 0.67, BCa 95% CI[0.32,0.89]) was over five times the size of the null correlations between income inequality and frequency of hugging/cuddling and sex. As social complexity requires monitoring resource competition among large groups and predicts kissing prevalence in remote societies, this gesture may be important in the maintenance of long-term pair bonds in specific environments.