Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Horm Metab Res ; 56(4): 279-285, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37956864

RESUMEN

Ferroptosis was recently identified as a non-apoptotic, iron-dependent cell death mechanism that is involved in various pathologic conditions. There is first evidence for its significance also in the context of islet isolation and transplantation. Transplantation of pancreatic human islets is a viable treatment strategy for patients with complicated diabetes mellitus type 1 (T1D) that suffer from severe hypoglycemia. A major determinant for functional outcome is the initial islet mass transplanted. Efficient islet isolation procedures and measures to minimize islet loss are therefore of high relevance. To this end, better understanding and subsequent targeted inhibition of cell death during islet isolation and transplantation is an effective approach. In this study, we aimed to elucidate the mechanism of ferroptosis in pancreatic islets. Using a rodent model, isolated islets were characterized relating to the effects of experimental induction (RSL3) and inhibition (Fer1) of ferroptotic pathways. Besides viability, survival, and function, the study focused on characteristic ferroptosis-associated intracellular changes such as MDA level, iron concentration and the expression of ACSL4. The study demonstrates that pharmaceutical induction of ferroptosis by RSL3 causes enhancement of oxidative stress and leads to an increase of intracellular iron, zinc and MDA concentration, as well as the expression of ACSL4 protein. Consequently, a massive reduction of islet function, viability, and survival was found. Fer1 has the potential to inhibit and attenuate these cellular changes and thereby protect the islets from cell death.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Humanos , Trasplante de Islotes Pancreáticos/efectos adversos , Trasplante de Islotes Pancreáticos/métodos , Trasplante de Islotes Pancreáticos/fisiología , Diabetes Mellitus Tipo 1/metabolismo , Muerte Celular , Hierro
2.
Molecules ; 28(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37241825

RESUMEN

Iron is an essential element involved in a variety of physiological functions. However, excess iron catalyzes the generation of reactive oxygen species (ROS) via the Fenton reaction. Oxidative stress, caused by an increase in intracellular ROS production, can be a contributory factor to metabolic syndromes such as dyslipidemia, hypertension, and type 2 diabetes (T2D). Accordingly, interest has grown recently in the role and use of natural antioxidants to prevent iron-induced oxidative damage. This study investigated the protective effect of the phenolic acids; ferulic acid (FA) and its metabolite ferulic acid 4-O-sulfate disodium salt (FAS) against excess iron-related oxidative stress in murine MIN6 cells and the pancreas of BALB/c mice. Rapid iron overload was induced with 50 µmol/L ferric ammonium citrate (FAC) and 20 µmol/L 8-hydroxyquinoline (8HQ) in MIN6 cells, while iron dextran (ID) was used to facilitate iron overload in mice. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, ROS levels were determined by dihydrodichlorofluorescein (H2DCF) cell-permeant probe, iron levels were measured by inductively coupled plasma mass spectrometry (ICP-MS), glutathione, SOD (superoxide dismutase) and lipid peroxidation, and mRNA were assayed with commercially available kits. The phenolic acids enhanced cell viability in iron-overloaded MIN6 cells in a dose-dependent manner. Furthermore, MIN6 cells exposed to iron showed elevated levels of ROS, glutathione (GSH) depletion and lipid peroxidation (p < 0.05) compared to cells that were protected by treatment with FA or FAS. The treatment of BALB/c mice with FA or FAS following exposure to ID increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) gene levels in the pancreas. Consequently, levels of its downstream antioxidant genes, HO-1, NQO1, GCLC and GPX4, increased in the pancreas. In conclusion, this study shows that FA and FAS protect pancreatic cells and liver tissue from iron-induced damage via the Nrf2 antioxidant activation mechanism.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sobrecarga de Hierro , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Diabetes Mellitus Tipo 2/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Sobrecarga de Hierro/metabolismo , Páncreas/metabolismo
3.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555529

RESUMEN

Ferroptosis is a regulated cell death process characterised by the iron-dependent accumulation of oxidised polyunsaturated fatty acid-containing phospholipids. Its initiation is complicated and involves reactive oxygen species (ROS) and a loss of the activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4). These play critical roles in the development of ferroptotic cell damage by lipid peroxidation. Antioxidant therapy is a promising therapeutic strategy to prevent or even reverse the progression of ferroptosis. This study was designed to demonstrate the protective effect of ferulic acid (FA) against oxidative stress and erastin-mediated ferroptosis in murine MIN6 cells. Cells were treated with FA or its metabolite ferulic acid 4-O-sulfate disodium salt (FAS) and 20 µM of erastin. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, iron levels were measured by inductively coupled plasma mass spectrometry (ICP-MS), ROS levels were determined by a dihydrodichlorofluorescein (H2DCF) cell-permeant probe, and glutathione and lipid peroxidation were assayed with commercially available kits. The phenolic acids enhanced cell viability in erastin-treated MIN6 cells in a dose-dependent manner. Furthermore, MIN6 cells exposed to erastin alone showed elevated levels of iron and ROS, glutathione (GSH) depletion, and lipid peroxidation (p < 0.05) compared to cells that were protected by co-treatment with FA or FAS. The treatment of MIN6 cells with FA or FAS following exposure to erastin increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) protein levels. Consequently, levels of its downstream antioxidant proteins, HO-1, NQO1, GCLC, and GPX4, increased. FA and FAS greatly decreased erastin-induced ferroptosis in the presence of the Nrf2 inhibitor, ML385, through the regulation of Nrf2 response genes. In conclusion, these results show that FA and FAS protect MIN6 cells from erastin-induced ferroptosis by the Nrf2 antioxidant protective mechanism.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Antioxidantes/farmacología , Glutatión/metabolismo , Hierro/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
4.
Biochem Biophys Rep ; 35: 101521, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37560439

RESUMEN

Liver as iron storage organ is particularly susceptible to oxidative stress-induced injury from excess iron. Thus, antioxidant therapies are often used to reverse oxidative damage and protect cells and tissues. This study investigated the protective effects of phenolic acids; ferulic acid (FA) and its metabolite, ferulic acid 4-O-sulfate disodium salt (FAS) against oxidative stress under iron overload conditions in mouse and HepG2 cells. Cells were exposed to FA or FAS and then treated with iron-induced oxidative stress complex of 50 µmol/L FAC and 20 µmol/L of 8-hydroxyquinoline 8HQ (8HQ-FAC). Iron dextran was injected intraperitoneally on alternate days for 10 days to induce the iron overload condition in BALB/c mice. The study revealed that the phenolic acids were protective against ROS production, lipid peroxidation and antioxidant depletion in HepG2 cells and liver tissues of BALB/c mice during iron-induced oxidative stress. The protective function of phenolic acids was achieved by the transcriptional activation of nuclear factor erythroid-2-related factor 2 (Nrf2) to regulate antioxidant genes. In conclusion, the study provides evidence that FA has the potential as a therapeutic agent against iron-related diseases such as T2D.

5.
Nutrients ; 15(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375636

RESUMEN

Increasing numbers of individuals follow plant-based diets. This has sparked interest in the nutritional evaluation of the meat substitute sector. Nutritional understanding of these products is vital as plant-based eating becomes more common. For example, animal products are rich sources of iron and zinc, and plant-based foods could be inadequate in these minerals. The main aim was to analyse the mineral composition and absorption from a range of plant-based meat-free burgers and compare them to a typical beef burger. Total and bioaccessible mineral contents of plant-based burgers and a beef burger were determined using microwave digestion and in vitro simulated gastrointestinal digestion, respectively. Mineral bioavailability was analysed by in vitro simulated gastrointestinal digestion of foods, followed by exposure of Caco-2 cells to the sample digests and assessment of mineral uptake. Mineral quantification for all samples was achieved using inductively coupled ICP-optical emission spectrometry (ICP-OES). The content of minerals varied significantly amongst the burgers. Significantly greater quantities of Fe and Zn were found in the beef burger compared to most meat substitutes. Bioaccessible Fe was significantly higher in the beef compared to most of the plant-based meat alternatives; however, bioavailable Fe of most plant-based burgers was comparable to beef (p > 0.05). Similarly, bioaccessible Zn was significantly (p < 0.001) higher from the beef burger. Moreover, beef was superior regarding bioavailable Zn (p ≤ 0.05-0.0001), with only the mycoprotein burger displaying comparable Zn bioavailability (p > 0.05). Beef is an excellent source of bioaccessible Fe and Zn compared to most plant-based substitutes; however, these plant-based substitutes were superior sources of Ca, Cu, Mg and Mn. The quantity of bioaccessible and absorbable Fe varies dramatically among the meat alternatives. Plant-based burgers have the potential to provide adequate quantities of iron and zinc to those consuming such burgers as part of a varied diet. Thus, guiding consumer choices will depend on the variety of the vegetable constituents and their iron nutritional quality in different burgers.


Asunto(s)
Productos de la Carne , Minerales , Humanos , Animales , Bovinos , Células CACO-2 , Hierro/análisis , Productos de la Carne/análisis , Zinc , Plantas
6.
Pharmaceuticals (Basel) ; 12(1)2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736288

RESUMEN

Ferroptosis is a form of programmed cell death that is characterized by lipid peroxidation and is inducible by iron and the accumulation of reactive oxygen species (ROS). It is triggered by erastin but inhibited by antioxidants such as -tocopherol, -carotene, polyphenols, and iron chelators such as deferoxamine (DFO), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA). This study investigated the protective effects of two polyphenols, curcumin and (-)- epigallocatechin-3-gallate (EGCG), against iron loading and erastin-mediated ferroptosis in MIN6 cells. Cells were treated with polyphenols before exposure to iron-induced oxidative stress comprising of 20 µmol/L of 8-hydroxyquinoline (8HQ) and 50 µmol/L of ferric ammonium citrate, (FAC) (8HQ+FAC) or Fenton reaction substrate (FS) (30 µmol/L of FeSO4 and 0.5 of mmol/L H2O2) and 20 µmol/L erastin. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, iron levels were measured by inductively-coupled plasma mass spectrometry (ICP-MS), glutathione and lipid peroxidation were assayed with commercially-available kits. Curcumin and EGCG both significantly protected pancreatic cells against iron-induced oxidative damage. Moreover, both compounds also protected against erastin-induced ferroptosis in pancreatic cells. The polyphenols enhanced cell viability in erastin-treated MIN6 cells in a dose- and time-dependent manner. Furthermore, MIN6 cells exposed to erastin alone showed elevated levels of iron, glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) degradation and lipid peroxidation (p < 0.05) compared to cells that were protected by pre-treatment with curcumin or EGCG. Taken together, the data identify curcumin and EGCG as novel ferroptosis inhibitors, which might exert their protective effects by acting as iron chelators and preventing GSH depletion, GPX4 inactivation, and lipid peroxidation in MIN6 cells. The implications of the findings on the effects of iron overload and ferroptosis represent a potential therapeutic strategy against iron-related diseases.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda