Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 143(4): 1127-1142, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32293668

RESUMEN

Chronic disability in multiple sclerosis is linked to neuroaxonal degeneration. 4-aminopyridine (4-AP) is used and licensed as a symptomatic treatment to ameliorate ambulatory disability in multiple sclerosis. The presumed mode of action is via blockade of axonal voltage gated potassium channels, thereby enhancing conduction in demyelinated axons. In this study, we provide evidence that in addition to those symptomatic effects, 4-AP can prevent neuroaxonal loss in the CNS. Using in vivo optical coherence tomography imaging, visual function testing and histologic assessment, we observed a reduction in retinal neurodegeneration with 4-AP in models of experimental optic neuritis and optic nerve crush. These effects were not related to an anti-inflammatory mode of action or a direct impact on retinal ganglion cells. Rather, histology and in vitro experiments indicated 4-AP stabilization of myelin and oligodendrocyte precursor cells associated with increased nuclear translocation of the nuclear factor of activated T cells. In experimental optic neuritis, 4-AP potentiated the effects of immunomodulatory treatment with fingolimod. As extended release 4-AP is already licensed for symptomatic multiple sclerosis treatment, we performed a retrospective, multicentre optical coherence tomography study to longitudinally compare retinal neurodegeneration between 52 patients on continuous 4-AP therapy and 51 matched controls. In line with the experimental data, during concurrent 4-AP therapy, degeneration of the macular retinal nerve fibre layer was reduced over 2 years. These results indicate disease-modifying effects of 4-AP beyond symptomatic therapy and provide support for the design of a prospective clinical study using visual function and retinal structure as outcome parameters.


Asunto(s)
4-Aminopiridina/farmacología , Esclerosis Múltiple/patología , Fármacos Neuroprotectores/farmacología , Neuritis Óptica/patología , Degeneración Retiniana/patología , Adulto , Anciano , Animales , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Células-Madre Neurales/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Wistar
2.
Front Neurol ; 15: 1370503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988600

RESUMEN

Background: This preliminary retrospective cohort study investigates the potential additive prophylactic effect of erenumab, a fully human monoclonal antibody that blocks the calcitonin gene-related peptide receptor, in combination with ongoing onabotulinumtoxin A (onaBoNT-A) treatment in patients suffering from chronic migraine. Methods: The study included 218 patients and investigated the effects of adding erenumab to the existing treatment regimen. The primary outcome was the MIDAS (Migraine Disability Assessment) score assessed 3 months after the introduction of erenumab. Results: The results indicated a significant improvement of the MIDAS score, suggesting a reduction in migraine-related disability following the addition of erenumab to onaBoNT-A. In the inter group comparison, dual therapy showed a significantly greater reduction of the MIDAS when compared to a switch from onaBoNT-A to erenumab monotherapy, but not compared to initiation of onaBoNT-A monotherapy. It is hypothesized that the observed additive effects are due to the independent modes of action of erenumab and onabotulinumtoxin A. Conclusion: This study suggests that the combination of erenumab with onaBoNT-A may offer an improved approach for the treatment of chronic migraine in selected patients. However, the results highlight the need for prospective, controlled studies to validate these findings and determine the optimal combination of treatments tailored to the individual patient.

3.
Nat Commun ; 15(1): 5243, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897994

RESUMEN

Retinal optical coherence tomography has been identified as biomarker for disease progression in relapsing-remitting multiple sclerosis (RRMS), while the dynamics of retinal atrophy in progressive MS are less clear. We investigated retinal layer thickness changes in RRMS, primary and secondary progressive MS (PPMS, SPMS), and their prognostic value for disease activity. Here, we analyzed 2651 OCT measurements of 195 RRMS, 87 SPMS, 125 PPMS patients, and 98 controls from five German MS centers after quality control. Peripapillary and macular retinal nerve fiber layer (pRNFL, mRNFL) thickness predicted future relapses in all MS and RRMS patients while mRNFL and ganglion cell-inner plexiform layer (GCIPL) thickness predicted future MRI activity in RRMS (mRNFL, GCIPL) and PPMS (GCIPL). mRNFL thickness predicted future disability progression in PPMS. However, thickness change rates were subject to considerable amounts of measurement variability. In conclusion, retinal degeneration, most pronounced of pRNFL and GCIPL, occurs in all subtypes. Using the current state of technology, longitudinal assessments of retinal thickness may not be suitable on a single patient level.


Asunto(s)
Progresión de la Enfermedad , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Retina , Degeneración Retiniana , Tomografía de Coherencia Óptica , Humanos , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/patología , Masculino , Femenino , Tomografía de Coherencia Óptica/métodos , Adulto , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Retina/diagnóstico por imagen , Retina/patología , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Esclerosis Múltiple Crónica Progresiva/fisiopatología , Imagen por Resonancia Magnética/métodos , Pronóstico , Fibras Nerviosas/patología , Células Ganglionares de la Retina/patología
4.
Front Neurol ; 12: 785180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777236

RESUMEN

Fingolimod (FTY) is a disease modifying therapy for relapsing remitting multiple sclerosis (RRMS) which can lead to severe lymphopenia requiring therapy discontinuation in order to avoid adverse events. However, this can result in severe disease reactivation occasionally presenting with tumefactive demyelinating lesions (TDLs). TDLs, which are thought to originate from a massive re-entry of activated lymphocytes into the central nervous system, are larger than 2 cm in diameter and may feature mass effect, perifocal edema, and gadolinium enhancement. In these cases, it can be challenging to exclude important differential diagnoses for TDLs such as progressive multifocal leukoencephalopathy (PML) or other opportunistic infections. Here, we present the case of a 26-year-old female patient who suffered a massive rebound with TDLs following FTY discontinuation with primarily neuropsychiatric symptoms despite persisting lymphopenia. Two cycles of seven plasmaphereses each were necessary to achieve remission and ocrelizumab was used for long-term stabilization.

5.
Front Neurol ; 12: 696807, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248832

RESUMEN

The Marburg variant of multiple sclerosis (Marburg MS) is the most aggressive form of MS, often leading to death soon after onset. Here we describe the case of a 26-year-old Marburg MS patient presenting with severe neurological deficits requiring intensive care. In spite of more than 100 gadolinium-enhancing MRI lesions, the patient recovered almost completely upon high-dose cyclophosphamide (HiCy) rescue treatment (four consecutive days with 50 mg/kg/day, cumulative absolute dose of 14 g). Following the acute treatment, her disease was stabilized by B cell depletion using ocrelizumab. Clinical amelioration was reflected by a decrease of MRI activity and a marked decline of serum neurofilament light chain levels. HiCy rescue treatment followed by ocrelizumab as a maintenance therapy prevented permanent disability and achieved an almost complete clinical and drastic radiological improvement in this Marburg MS patient.

6.
Mult Scler J Exp Transl Clin ; 5(3): 2055217319871582, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31523449

RESUMEN

BACKGROUND: The association of peripapillary retinal nerve fibre layer (pRNFL) and ganglion cell-inner plexiform layer (GCIPL) thickness with neurodegeneration in multiple sclerosis (MS) is well established. The relationship of the adjoining inner nuclear layer (INL) with inflammatory disease activity is less well understood. OBJECTIVE: The objective of this paper is to investigate the relationship of INL volume changes with inflammatory disease activity in MS.Methods In this longitudinal, multi-centre study, optical coherence tomography (OCT) and clinical data (disability status, relapses and MS optic neuritis (MSON)) were collected in 785 patients with MS (68.3% female) and 92 healthy controls (63.4% female) from 11 MS centres between 2010 and 2017 and pooled retrospectively. Data on pRNFL, GCIPL and INL were obtained at each centre. RESULTS: There was a significant increase in INL volume in eyes with new MSON during the study (N = 61/1562, ß = 0.01 mm3, p < .001). Clinical relapses (other than MSON) were significantly associated with increased INL volume (ß = 0.005, p = .025). INL volume was independent of disease progression (ß = 0.002 mm3, p = .474). CONCLUSION: Our data demonstrate that an increase in INL volume is associated with MSON and the occurrence of clinical relapses. Therefore, INL volume changes may be useful as an outcome marker for inflammatory disease activity in MSON and MS treatment trials.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda