Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 112(49): 15101-6, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598710

RESUMEN

Bacterial RNases catalyze the turnover of RNA and are essential for gene expression and quality surveillance of transcripts. In Escherichia coli, the exoribonucleases RNase R and polynucleotide phosphorylase (PNPase) play critical roles in degrading RNA. Here, we developed an optical-trapping assay to monitor the translocation of individual enzymes along RNA-based substrates. Single-molecule records of motion reveal RNase R to be highly processive: one molecule can unwind over 500 bp of a structured substrate. However, enzyme progress is interrupted by pausing and stalling events that can slow degradation in a sequence-dependent fashion. We found that the distance traveled by PNPase through structured RNA is dependent on the A+U content of the substrate and that removal of its KH and S1 RNA-binding domains can reduce enzyme processivity without affecting the velocity. By a periodogram analysis of single-molecule records, we establish that PNPase takes discrete steps of six or seven nucleotides. These findings, in combination with previous structural and biochemical data, support an asymmetric inchworm mechanism for PNPase motion. The assay developed here for RNase R and PNPase is well suited to studies of other exonucleases and helicases.


Asunto(s)
Exorribonucleasas/metabolismo , Pinzas Ópticas , ADN/química , Exorribonucleasas/química , ARN/química
2.
Structure ; 16(8): 1238-44, 2008 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-18682225

RESUMEN

RNase E is an essential bacterial endoribonuclease involved in the turnover of messenger RNA and the maturation of structured RNA precursors in Escherichia coli. Here, we present the crystal structure of the E. coli RNase E catalytic domain in the apo-state at 3.3 A. This structure indicates that, upon catalytic activation, RNase E undergoes a marked conformational change characterized by the coupled movement of two RNA-binding domains to organize the active site. The structural data suggest a mechanism of RNA recognition and cleavage that explains the enzyme's preference for substrates possessing a 5'-monophosphate and accounts for the protective effect of a triphosphate cap for most transcripts. Internal flexibility within the quaternary structure is also observed, a finding that has implications for recognition of structured RNA substrates and for the mechanism of internal entry for a subset of substrates that are cleaved without 5'-end requirements.


Asunto(s)
Apoproteínas/química , Endorribonucleasas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Estructura Cuaternaria de Proteína , Estabilidad del ARN , ARN/metabolismo , Secuencia de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Cristalografía por Rayos X , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , ARN/química , Especificidad por Sustrato
3.
J Mol Biol ; 423(5): 664-76, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22885804

RESUMEN

Rho termination factor is an essential hexameric helicase responsible for terminating 20-50% of all mRNA synthesis in Escherichia coli. We used single-molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho utilization site of the λtR1 terminator. Our results are consistent with Rho complexes adopting two states: one that binds 57 ± 2nt of RNA across all six of the Rho primary binding sites, and another that binds 85 ± 2nt at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5'→3' toward RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the Rho utilization site and RNAP. These findings lead to a general model for Rho binding and translocation and establish a novel experimental approach that should facilitate additional single-molecule studies of RNA-binding proteins.


Asunto(s)
Factor Rho/metabolismo , Biopolímeros/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Unión Proteica , Conformación Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda