Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Small ; 19(13): e2201790, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35570377

RESUMEN

Heparin is a commonly applied blood anticoagulant agent in clinical use. After treatment, excess heparin needs to be removed to circumvent side effects and recover the blood-clotting cascade. Most existing heparin antidotes rely on direct heparin binding and complexation, yet selective compartmentalization and sequestration of heparin would be beneficial for safety and efficiency. However, such systems have remained elusive. Herein, a semipermeable protein-based microcompartment (proteinosome) is loaded with a highly positively charged chitosan derivative, which can induce electrostatics-driven internalization of anionic guest molecules inside the compartment. Chitosan-loaded proteinosomes are subsequently employed to capture heparin, and an excellent heparin-scavenging performance is demonstrated under physiologically relevant conditions. Both the highly positive scavenger and the polyelectrolyte complex are confined and shielded by the protein compartment in a time-dependent manner. Moreover, selective heparin-scavenging behavior over serum albumin is realized through adjusting the localized scavenger or surrounding salt concentrations at application-relevant circumstances. In vitro studies reveal that the cytotoxicity of the cationic scavenger and the produced polyelectrolyte complex is reduced by protocell shielding. Therefore, the proteinosome-based systems may present a novel polyelectrolyte-scavenging method for biomedical applications.


Asunto(s)
Células Artificiales , Quitosano , Heparina/química , Células Artificiales/química , Quitosano/química , Polielectrolitos , Proteínas/química
2.
Acc Chem Res ; 55(13): 1785-1795, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35647700

RESUMEN

The concept of colloids encompasses a wide range of isotropic and anisotropic particles with diverse sizes, shapes, and functions from synthetic nanoparticles, nanorods, and nanosheets to functional biological units. They are addressed in materials science for various functions, while they are ubiquitous in the biological world for multiple functions. A large variety of synthetic colloids have been researched due to their scientific and technological importance; still they characteristically suffer from finite size distributions, imperfect shapes and interactions, and not fully engineered functions. This contrasts with biological colloids that offer precision in their size, shape, and functionality. Materials science has searched for inspiration from the biological world to allow structural control by self-assembly and hierarchy and to identify novel routes for combinations of functions in bio-inspiration.Herein, we first discuss different approaches for highly defined structural control of technically relevant synthetic colloids based on guided assemblies of biological motifs. First, we describe how polydisperse nanoparticles can be assembled within hollow protein cages to allow well-defined assemblies and hierarchical packings. Another approach relies on DNA nanotechnology-based assemblies, where engineered DNA structures allow programmed assembly. Then we will discuss synthetic colloids that have either particularly narrow size dispersity or even atomically precise structures for new assemblies and potential functions. Such colloids can have well-defined packings for membranes allowing high modulus. They can be switchable using light-responsive moieties, and they can initiate packing of larger assemblies of different geometrical shapes. The emphasis is on atomically defined nanoclusters that allow well-defined assemblies by supramolecular interactions, such as directional hydrogen bonding. Finally, we will discuss stimulus-responsive colloids for new functions, even toward complex responsive functions inspired by life. Therein, stimulus-responsive materials inspired by biological learning could allow the next generation of such materials. Classical conditioning is among the simplest biological learning concepts, requiring two stimuli and triggerable memory. Therein we use thermoresponsive hydrogels with plasmonic gold nanoparticles and a spiropyran photoacid as a model. Heating is the unconditioned stimulus leading to melting of the thermoresponsive gel, whereas light (at a specified wavelength) originally leads to reduced pH without plasmonic or structural changes because of steric gel stabilization. Under heat-induced gel melting, light results in pH-decrease and chain-like aggregation of the gold nanoparticles, allowing a new plasmonic response. Thus, simultaneous heating and light irradiation allow conditioning for a newly derived stimulus, where the logic diagram is analogous to Pavlovian conditioning. The shown assemblies demonstrate the different functionalities achievable using colloids when the sizes and the dispersity are controlled.


Asunto(s)
Oro , Nanopartículas del Metal , Coloides/química , ADN/química , Nanotecnología/métodos
3.
Chemistry ; 29(27): e202202022, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37060224

RESUMEN

Our recent publication in Chem. Eur. J. 2022, 28, e202104341 has inspired Prof. Peter B. Crowley (P.C.) to write a Correspondence questioning the presented concept of electrostatic self-assembly. The offered criticism is twofold: 1) the role of the cationic pillar[5]arene macrocycle to act as molecular glue in the formation of electrostatically driven protein assemblies is questioned by arguing that the pillararene is not incorporated into the frameworks. 2) Later, P.C. speculates that when the frameworks form, the role of electrostatic interactions is not firmly established and cation-pi bonding is the more plausible interaction. In this response, the raised comments are addressed. We present direct experimental NMR evidence showing that the pillar[5]arene is incorporated into the frameworks. Furthermore, we discuss the electrostatic self-assembly and our ferritin-related research line more broadly and clarify the role of key experiments.

4.
Biomacromolecules ; 24(2): 1014-1021, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36598935

RESUMEN

Heparin is a widely applied anticoagulant agent. However, in clinical practice, it is of vital importance to reverse its anticoagulant effect to restore the blood-clotting cascade and circumvent side effects. Inspired by protein cages that can encapsulate and protect their cargo from surroundings, we utilize three designed protein copolymers to sequester heparin into inert nanoparticles. In our design, a silk-like sequence provides cooperativity between proteins, generating a multivalency effect that enhances the heparin-binding ability. Protein copolymers complex heparin into well-defined nanoparticles with diameters below 200 nm. We also develop a competitive fluorescent switch-on assay for heparin detection, with a detection limit of 0.01 IU mL-1 in plasma that is significantly below the therapeutic range (0.2-8 IU mL-1). Moreover, moderate cytocompatibility is demonstrated by in vitro cell studies. Therefore, such engineered protein copolymers present a promising alternative for neutralizing and sensing heparin, but further optimization is required for in vivo applications.


Asunto(s)
Anticoagulantes , Heparina , Anticoagulantes/farmacología , Heparina/farmacología , Polímeros/farmacología , Coagulación Sanguínea , Colorantes
5.
Nucleic Acids Res ; 49(6): 3048-3062, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33660776

RESUMEN

Doxorubicin (DOX) is a common drug in cancer chemotherapy, and its high DNA-binding affinity can be harnessed in preparing DOX-loaded DNA nanostructures for targeted delivery and therapeutics. Although DOX has been widely studied, the existing literature of DOX-loaded DNA-carriers remains limited and incoherent. Here, based on an in-depth spectroscopic analysis, we characterize and optimize the DOX loading into different 2D and 3D scaffolded DNA origami nanostructures (DONs). In our experimental conditions, all DONs show similar DOX binding capacities (one DOX molecule per two to three base pairs), and the binding equilibrium is reached within seconds, remarkably faster than previously acknowledged. To characterize drug release profiles, DON degradation and DOX release from the complexes upon DNase I digestion was studied. For the employed DONs, the relative doses (DOX molecules released per unit time) may vary by two orders of magnitude depending on the DON superstructure. In addition, we identify DOX aggregation mechanisms and spectral changes linked to pH, magnesium, and DOX concentration. These features have been largely ignored in experimenting with DNA nanostructures, but are probably the major sources of the incoherence of the experimental results so far. Therefore, we believe this work can act as a guide to tailoring the release profiles and developing better drug delivery systems based on DNA-carriers.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , ADN/química , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Nanoestructuras/química , Antibióticos Antineoplásicos/química , Tampones (Química) , Desoxirribonucleasa I , Doxorrubicina/química , Liberación de Fármacos , Cloruro de Magnesio
6.
Angew Chem Int Ed Engl ; 62(28): e202303880, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37093162

RESUMEN

Protein crystallization is an important tool for structural biology and nanostructure preparation. Here, we report on kinetic pathway-dependent protein crystals that are controlled by light. Photo-responsive crystallites are obtained by complexing the model proteins with cationic azobenzene dyes. The crystalline state is readily switched to a dispersed phase under ultraviolet light and restored by subsequent visible-light illumination. The switching can be reversibly repeated for multiple cycles without noticeable structure deterioration. Importantly, the photo-treatment not only significantly increases the crystallinity, but creates crystallites at conditions where no ordered lattices are observed upon directly mixing the components. Further control over the azobenzene isomerization kinetics produces protein single crystals of up to ≈50 µm. This approach offers an intriguing method to fabricate metamaterials and study optically controlled crystallization.


Asunto(s)
Luz , Análisis por Matrices de Proteínas , Rayos Ultravioleta , Cristalización/métodos
7.
Small ; 18(18): e2107393, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35363419

RESUMEN

The internal design of DNA nanostructures defines how they behave in different environmental conditions, such as endonuclease-rich or low-Mg2+ solutions. Notably, the inter-helical crossovers that form the core of such DNA objects have a major impact on their mechanical properties and stability. Importantly, crossover design can be used to optimize DNA nanostructures for target applications, especially when developing them for biomedical environments. To elucidate this, two otherwise identical DNA origami designs are presented that have a different number of staple crossovers between neighboring helices, spaced at 42- and 21- basepair (bp) intervals, respectively. The behavior of these structures is then compared in various buffer conditions, as well as when they are exposed to enzymatic digestion by DNase I. The results show that an increased number of crossovers significantly improves the nuclease resistance of the DNA origami by making it less accessible to digestion enzymes but simultaneously lowers its stability under Mg2+ -free conditions by reducing the malleability of the structures. Therefore, these results represent an important step toward rational, application-specific DNA nanostructure design.


Asunto(s)
ADN , Nanoestructuras , Estudios Cruzados , ADN/química , Nanoestructuras/química , Nanotecnología/métodos , Conformación de Ácido Nucleico
8.
Chemistry ; 28(11): e202104341, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35043998

RESUMEN

Supramolecular self-assembly of biomolecules provides a powerful bottom-up strategy to build functional nanostructures and materials. Among the different biomacromolecules, protein cages offer various advantages including uniform size, versatility, multi-modularity, and high stability. Additionally, protein cage crystals present confined microenvironments with well-defined dimensions. On the other hand, molecular hosts, such as cyclophanes, possess a defined cavity size and selective recognition of guest molecules. However, the successful combination of macrocycles and protein cages to achieve functional co-crystals has remained limited. In this study, we demonstrate electrostatic binding between cationic pillar[5]arenes and (apo)ferritin cages that results in porous and crystalline frameworks. The electrostatically assembled crystals present a face-centered cubic (FCC) lattice and have been characterized by means of small-angle X-ray scattering and cryo-TEM. These hierarchical structures result in a multiadsorbent framework capable of hosting both organic and inorganic pollutants, such as dyes and toxic metals, with potential application in water-remediation technologies.


Asunto(s)
Nanoestructuras , Ferritinas/química , Nanoestructuras/química , Porosidad , Electricidad Estática , Agua/química
9.
Chemistry ; 28(11): e202200343, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35179246

RESUMEN

Invited for the cover of this issue are Mauri A. Kostiainen and co-workers at Aalto and Oakland Universities. The image depicts two ferritin protein cages joined by a cationic pillararene hosting a guest dye. Read the full text of the article at 10.1002/chem.202104341.


Asunto(s)
Ferritinas , Humanos
10.
Angew Chem Int Ed Engl ; 61(42): e202209033, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-35876617

RESUMEN

Phthalocyanines are important organic dyes with a broad applicability in optoelectronics, catalysis, sensing and nanomedicine. Currently, phthalocyanines are synthetized in high boiling organic solvents, like dimethylaminoethanol (DMAE), which is a flammable, corrosive, and bioactive substance, miscible with water and harmful to the environment. Here we show a new solid-state approach for the high-yielding synthesis of phthalocyanines, which reduces up to 100-fold the amount of DMAE. Through systematic screening of solid-state reaction parameters, carried out by ball-milling and aging, we reveal the influence of key variables-temperature, presence of a template, and the amount and role of DMAE in the conversion of tBu phthalonitrile to tetra-tBu phthalocyanine. These results set the foundations to synthesize these high-performance dyes through a greener approach, opening the field of solid-state synthesis to a wider family of phthalocyanines.


Asunto(s)
Cáusticos , Deanol , Colorantes , Indoles , Isoindoles , Solventes , Agua
11.
Small ; 17(18): e2007705, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33738957

RESUMEN

Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 (177 Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177 Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177 Lu-labeled CNC NPs loaded with vemurafenib ([177 Lu]Lu-CNC-V NPs) is developed and the therapeutic effect in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177 Lu]Lu-CNC-V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177 Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177 Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [177 Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP-based drug delivery systems after intravenous administration.


Asunto(s)
Melanoma , Nanopartículas , Animales , Línea Celular Tumoral , Celulosa , Sistemas de Liberación de Medicamentos , Humanos , Melanoma/tratamiento farmacológico , Ratones , Medicina de Precisión , Distribución Tisular
12.
Bioconjug Chem ; 32(6): 1123-1129, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34029458

RESUMEN

Design and synthesis of novel photosensitizer architectures is a key step toward new multifunctional molecular materials. Photoactive Janus-type molecules provide interesting building blocks for such systems by presenting two well-defined chemical functionalities that can be utilized orthogonally. Herein a multifunctional phthalocyanine is reported, bearing a bulky and positively charged moiety that hinders their aggregation while providing the ability to adhere on DNA origami nanostructures via reversible electrostatic interactions. On the other hand, triethylene glycol moieties render a water-soluble and chemically inert corona that can stabilize the structures. This approach provides insight into the molecular design and synthesis of Janus-type sensitizers that can be combined with biomolecules, rendering optically active biohybrids.


Asunto(s)
ADN/química , Indoles/química , Nanotecnología , Isoindoles , Luz , Nanoestructuras/química , Conformación de Ácido Nucleico , Electricidad Estática
13.
Chemistry ; 27(33): 8564-8571, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33780583

RESUMEN

The surface-assisted hierarchical assembly of DNA origami nanostructures is a promising route to fabricate regular nanoscale lattices. In this work, the scalability of this approach is explored and the formation of a homogeneous polycrystalline DNA origami lattice at the mica-electrolyte interface over a total surface area of 18.75 cm2 is demonstrated. The topological analysis of more than 50 individual AFM images recorded at random locations over the sample surface showed only minuscule and random variations in the quality and order of the assembled lattice. The analysis of more than 450 fluorescence microscopy images of a quantum dot-decorated DNA origami lattice further revealed a very homogeneous surface coverage over cm2 areas with only minor boundary effects at the substrate edges. At total DNA costs of €â€…0.12 per cm2 , this large-scale nanopatterning technique holds great promise for the fabrication of functional surfaces.


Asunto(s)
Nanoestructuras , Nanotecnología , ADN , Microscopía de Fuerza Atómica , Conformación de Ácido Nucleico
14.
Biomacromolecules ; 22(6): 2702-2717, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34060815

RESUMEN

When cellulose nanocrystals (CNCs) are isolated from cellulose microfibrils, the parallel arrangement of the cellulose chains in the crystalline domains is retained so that all reducing end-groups (REGs) point to one crystallite end. This permits the selective chemical modification of one end of the CNCs. In this study, two reaction pathways are compared to selectively attach atom-transfer radical polymerization (ATRP) initiators to the REGs of CNCs, using reductive amination. This modification further enabled the site-specific grafting of the anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS) from the CNCs. Different analytical methods, including colorimetry and solution-state NMR analysis, were combined to confirm the REG-modification with ATRP-initiators and PSS. The achieved grafting yield was low due to either a limited conversion of the CNC REGs or side reactions on the polymerization initiator during the reductive amination. The end-tethered CNCs were easy to redisperse in water after freeze-drying, and the shear birefringence of colloidal suspensions is maintained after this process.


Asunto(s)
Celulosa , Nanopartículas , Polimerizacion , Agua
15.
Angew Chem Int Ed Engl ; 60(2): 827-833, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33022870

RESUMEN

Lipids are important building blocks in cellular compartments, and therefore their self-assembly into well-defined hierarchical structures has gained increasing interest. Cationic lipids and unstructured DNA can co-assemble into highly ordered structures (lipoplexes), but potential applications of lipoplexes are still limited. Using scaffolded DNA origami nanostructures could aid in resolving these drawbacks. Here, we have complexed DNA origami together with a cationic lipid 1,2-dioleoly-3-trimethylammonium-propane (DOTAP) and studied their self-assembly driven by electrostatic and hydrophobic interactions. The results suggest that the DNA origami function as templates for the growth of multilamellar lipid structures and that the DNA origami are embedded in the formed lipid matrix. Furthermore, the lipid encapsulation was found to significantly shield the DNA origami against nuclease digestion. The presented complexation strategy is suitable for a wide range of DNA-based templates and could therefore find uses in construction of cell-membrane-associated components.

16.
Angew Chem Int Ed Engl ; 60(1): 66-87, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32329947

RESUMEN

Native plant cellulose has an intrinsic supramolecular structure. Consequently, it can be isolated as nanocellulose species, which can be utilized as building blocks for renewable nanomaterials. The structure of cellulose also permits its end-wise modification, i.e., chemical reactions exclusively on one end of a cellulose chain or a nanocellulose particle. The premises for end-wise modification have been known for decades. Nevertheless, different approaches for the reactions have emerged only recently, because of formidable synthetic and analytical challenges associated with the issue, including the adverse reactivity of the cellulose reducing end and the low abundance of newly introduced functionalities. This Review gives a full account of the scientific underpinnings and challenges related to end-wise modification of cellulose nanocrystals. Furthermore, we present how the chemical modification of cellulose nanocrystal ends may be applied to directed assembly, resulting in numerous possibilities for the construction of new materials, such as responsive liquid crystal templates and composites with tailored interactions.

17.
Nano Lett ; 19(6): 3918-3924, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117758

RESUMEN

Development of protein cages for encapsulation of active enzyme cargoes and their subsequent arrangement into a controllable three-dimensional array is highly desirable. However, cargo capture is typically challenging because of difficulties in achieving reversible assembly/disassembly of protein cages in mild conditions. Herein we show that by using an unusual ferritin cage protein that undergoes triggerable assembly under mild conditions, we can achieve reversible filling with protein cargoes including an active enzyme. We demonstrate that these filled cages can be arrayed in three-dimensional crystal lattices and have an additional chaperone-like effect, increasing both thermostability and enzymatic activity of the encapsulated enzyme.


Asunto(s)
Proteínas Arqueales/química , Archaeoglobus fulgidus/química , Proteínas Bacterianas/química , Preparaciones de Acción Retardada/química , Ferritinas/química , Thermotoga maritima/química , Secuencia de Aminoácidos , Animales , Estabilidad de Enzimas , Enzimas Inmovilizadas/administración & dosificación , Enzimas Inmovilizadas/química , Proteínas Fluorescentes Verdes/administración & dosificación , Proteínas Fluorescentes Verdes/química , Modelos Moleculares , Muramidasa/administración & dosificación , Muramidasa/química , Nanoestructuras/química , Unión Proteica , Pliegue de Proteína
18.
Molecules ; 25(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316126

RESUMEN

Structural DNA nanotechnology has recently gained significant momentum, as diverse design tools for producing custom DNA shapes have become more and more accessible to numerous laboratories worldwide. Most commonly, researchers are employing a scaffolded DNA origami technique by "sculpting" a desired shape from a given lattice composed of packed adjacent DNA helices. Albeit relatively straightforward to implement, this approach contains its own apparent restrictions. First, the designs are limited to certain lattice types. Second, the long scaffold strand that runs through the entire structure has to be manually routed. Third, the technique does not support trouble-free fabrication of hollow single-layer structures that may have more favorable features and properties compared to objects with closely packed helices, especially in biological research such as drug delivery. In this focused review, we discuss the recent development of wireframe DNA nanostructures-methods relying on meshing and rendering DNA-that may overcome these obstacles. In addition, we describe each available technique and the possible shapes that can be generated. Overall, the remarkable evolution in wireframe DNA structure design methods has not only induced an increase in their complexity and thus expanded the prevalent shape space, but also already reached a state at which the whole design process of a chosen shape can be carried out automatically. We believe that by combining cost-effective biotechnological mass production of DNA strands with top-down processes that decrease human input in the design procedure to minimum, this progress will lead us to a new era of DNA nanotechnology with potential applications coming increasingly into view.


Asunto(s)
ADN/síntesis química , Nanoestructuras/química , Algoritmos , ADN/química , Sistemas de Liberación de Medicamentos , Humanos , Conformación de Ácido Nucleico
19.
Small ; 15(24): e1901427, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31062448

RESUMEN

The surface modification of nanoparticles (NPs) using different ligands is a common strategy to increase NP-cell interactions. Here, dentin phosphophoryn-derived peptide (DSS) lignin nanoparticles (LNPs) are prepared and characterized, the cellular internalization of the DSS-functionalized LNPs (LNPs-DSS) into three different cancer cell lines is evaluated, and their efficacy with the widely used iRGD peptide is compared. It is shown that controlled extent of carboxylation of lignin improves the stability at physiological conditions of LNPs formed upon solvent exchange. Functionalization with DSS and iRGD peptides maintains the spherical morphology and moderate polydispersity of LNPs. The LNPs exhibit good cytocompatibility when cultured with PC3-MM2, MDA-MB-231, and A549 in the conventional 2D model and in the 3D cell spheroid morphology. Importantly, the 3D cell models reveal augmented internalization of peptide-functionalized LNPs and improve antiproliferative effects when the LNPs are loaded with a cytotoxic compound. Overall, LNPs-DSS show equal or even superior cellular internalization than the LNPs-iRGD, suggesting that DSS can also be used to enhance the cellular uptake of NPs into different types of cells, and release different cargos intracellularly.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/síntesis química , Portadores de Fármacos/farmacocinética , Proteínas de la Matriz Extracelular/química , Lignina/química , Nanopartículas/química , Fosfoproteínas/química , Sialoglicoproteínas/química , Células A549 , Antineoplásicos/farmacocinética , Transporte Biológico/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/química , Liberación de Fármacos , Humanos , Ensayo de Materiales , Células PC-3 , Péptidos/química , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Células Tumorales Cultivadas
20.
Chembiochem ; 20(22): 2818-2823, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31163091

RESUMEN

DNA nanostructures have emerged as intriguing tools for numerous biomedical applications. However, in many of those applications and most notably in drug delivery, their stability and function may be compromised by the biological media. A particularly important issue for medical applications is their interaction with proteins such as endonucleases, which may degrade the well-defined nanoscale shapes. Herein, fundamental insights into this interaction are provided by monitoring DNase I digestion of four structurally distinct DNA origami nanostructures (DONs) in real time and at a single-structure level by using high-speed atomic force microscopy. The effect of the solid-liquid interface on DON digestion is also assessed by comparison with experiments in bulk solution. It is shown that DON digestion is strongly dependent on its superstructure and flexibility and on the local topology of the individual structure.


Asunto(s)
ADN/química , Desoxirribonucleasa I/química , Nanoestructuras/química , Ensayo de Cambio de Movilidad Electroforética , Hidrólisis , Microscopía de Fuerza Atómica/métodos , Conformación de Ácido Nucleico , Docilidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda