Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Artículo en Japonés | MEDLINE | ID: mdl-31434850

RESUMEN

PURPOSE: The respiratory gated irradiation using the real-time position management system (RPM) was used to clarify the generation of the gated signal when the respiration waveform changed, and also the evaluation method of the respiration waveform was also examined. METHODS: The respiratory waveform was changed using a moving phantom. Respiratory waveform was analyzed from the data recorded in RPM, and the out-of-phase gated rate was examined. Analysis was made by focusing on the coefficient of variation of the respiratory wavelength in the evaluation of respiratory waveform. RESULTS: Immediately after the change of respiratory wavelength from the short cycle to the long cycle, a gated signal was generated at a phase before the set gated phase, and a maximum advance of 1.259 ± 0.212 s occurred. Immediately after the change of respiratory wavelength from the long cycle to the short cycle, the gated signal was generated at the phase exceeding the set gated phase, and a delay of 0.997 ± 0.180 s occurred at the maximum. As the value of the coefficient of variation increased, the gated rate which was out of setting also increased. CONCLUSION: In respiratory gated irradiation using RPM, it became clear that the gated signal is generated out of the phase set by the respiratory waveform change. Coefficient of variation of the respiratory wavelength is considered to be an indicator for evaluating the respiratory waveform to be used in the respiratory gated irradiation.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Respiración , Fantasmas de Imagen
2.
Artículo en Japonés | MEDLINE | ID: mdl-29925751

RESUMEN

PURPOSE: The purpose of this research is to clarify the effects of low monitor unit (MU) on multileaf collimator (MLC) position accuracy and dose distribution in intensity modulated radiotherapy (IMRT) using respiratory gated. METHOD: In the phantom experiment, irradiation without respiratory gated and respiratory gated with low MU (3, 5, and 7 MU) were performed, and positional accuracy and dose distribution of MLC were analyzed. MLC positional accuracy was calculated from the log-files and the MLC position error, gap size error, MLC leaf speed were calculated and compared with the planned value. Gamma analysis of the dose distribution obtained from the irradiated films and the dose distribution of the treatment plans were carried out. RESULTS: Without respiratory gated and respiratory gated, the frequency of gap size error that did not exceed 0.2 mm were more than 93% under all conditions. MLC position error increased with increasing MLC leaf speed. The determination coefficient of respiratory gated irradiation was lower by about 20% compared with that without respiratory gated, and variation from the approximate straight line occurs. The output difference due to low MU irradiation during respiratory gated was within 1% of the planned value. Although, the pass rate of gamma analysis differed in tumor size, the dose distribution well conformity at 96% or more for both without respiratory gated and respiratory gated. However, in the comparison of the profile in the MLC movement direction, respiratory gated irradiation at 3 MU showed a difference of about 9% at the edge of the irradiated field and about 6% at the point where the dose rapidly changed. CONCLUSION: It was shown that MLC position accuracy due to stop and go of MLC leaf can be secured even with low MU irradiation of about 3 MU. However, attention should be paid to the dose of risk organs adjacent to the tumor margin.


Asunto(s)
Neoplasias , Radioterapia de Intensidad Modulada , Humanos , Movimiento , Neoplasias/radioterapia , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
3.
PLoS One ; 17(11): e0276483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36395333

RESUMEN

The aim of this preliminary study was to measure the systolic BP (SBP) and diastolic BP (DBP) and heart rate (HR) of radiological technologists by WD, and evaluate variation among individuals by worktime, day of the week, job, and workplace. Measurements were obtained using a wristwatch-type WD with optical measurement technology that can measure SBP and DBP every 10 minutes and HR every 30 minutes. SBP, DBP, and HR data obtained at baseline and during work time were combined with the hours of work, day of the week, job, and workplace recorded by the participants in 8 consecutive weeks. We calculated the mean, the ratio to baseline and coefficient of variation [CV(%)] for SBP, DBP, and HR. SBP, DBP, and HR values were significantly higher during work hours than at baseline (p<0.03). The ratio to baseline values ranged from 1.02 to 1.26 for SBP and from 1.07 to 1.30 for DBP. The ratio to baseline for SBP and DBP showed CV(%) of approximately 10% according to the day of the week and over the study period. For HR, ratio to baseline ranged from 0.95 to 1.29. The ratio of mean BP to baseline was >1.2 at the time of starting work, middle and after lunch, and at 14:00. The ratio to baseline of SBP were 1.2 or more for irradiation, equipment accuracy control, registration of patient data, dose verification and conference time, and were also working in CT examination room, treatment planning room, linac room, and the office. CV(%) of BP and HR were generally stable for all workplaces. WD measurements of SBP, DBP, and HR were higher during working hours than at baseline and varied by the individuals, work time, job, and workplace. This method may enable evaluation of unconscious workload in individuals.


Asunto(s)
Hipertensión , Dispositivos Electrónicos Vestibles , Humanos , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Determinación de la Presión Sanguínea/métodos
4.
Phys Med ; 77: 100-107, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32823209

RESUMEN

The purpose of this study was to develop a novel dynamic deformable thorax phantom for deformable image registration (DIR) quality assurance (QA) and to verify as a tool for commissioning and DIR QA. The phantom consists of a base phantom, an inner phantom, and a motor-derived piston. The base phantom is an acrylic cylinder phantom with a diameter of 180 mm. The inner phantom consists of deformable, 20 mm thick disk-shaped sponges. To evaluate the physical characteristics of the phantom, we evaluated its image quality and deformation. DIR accuracies were evaluated using the three types of commercially DIR software (MIM, RayStation, and Velocity AI) to test the feasibility of this phantom. We used different DIR parameters to test the impact of parameters on DIR accuracy in various phantom settings. To evaluate DIR accuracy, a target registration error (TRE) was calculated using the anatomical landmark points. The three locations (i.e., distal, middle, and proximal positions) had different displacement amounts. This result indicated that the inner phantom was not moved but deformed. In cases with different phantom settings and marker settings, the ranges of the average TRE were 0.63-15.60 mm (MIM). In cases with different DIR parameters settings, the ranges of the average TRE were as follows: 0.73-7.10 mm (MIM), 8.25-8.66 mm (RayStation), and 8.26-8.43 mm (Velocity). These results suggest that our phantom could evaluate the detailed DIR behaviors with TRE. Therefore, this is indicative of the potential usefulness of our phantom in DIR commissioning and QA.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Tórax/diagnóstico por imagen , Tomografía Computarizada por Rayos X
5.
Oncol Lett ; 16(2): 2741-2749, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30013669

RESUMEN

The association between rectal bleeding and the received dose relative to the volume of the rectum is well established in prostate cancer patients who have undergone radiotherapy. The relative volume of the rectum is affected by the rectal anatomical volume, which depends on the definition of rectal length. Compared with the relative rectal volume, the absolute volume of the rectum may be more associated with rectal bleeding. The present study investigated the absolute volume of the rectum that may be used to predict late rectal bleeding following intensity-modulated radiotherapy (IMRT) and image-guided radiotherapy (IGRT). The cases of 82 patients of prostate cancer, who underwent IMRT and IGRT, were retrospectively evaluated by evaluating dose volume histograms. The median patient age was 73.4 years (range, 51.3-85.9 years). The median total prescribed dose was 76 Gy given in 38 fractions. The absolute and relative dose volumes of the rectum were evaluated by multivariate analysis, and the optimal dose to prevent rectal bleeding was determined. The actuarial ≥grade 1 rectal bleeding rate at 4 years was 4.5% (95% confidence interval, 1.5-13.4%) with a median observation period of 45.3 months. The absolute rectal volume (ml) treated with 60 Gy was the only significant risk factor for rectal bleeding (P<0.05), but the relative rectal volume (%) was not identified as a significant factor by the multivariate analysis. When the rectal volume of 5 or 10 ml received 60 Gy (D5cc and D10cc), rectal bleeding was expected to occur in 3.3 and 7.3% of the patients, respectively. Rectal D5cc ≤60 Gy is recommended to prevent late ≥grade 1 rectal bleeding in IGRT.

6.
Igaku Butsuri ; 38(1): 2-9, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-30122719

RESUMEN

Respiratory gated VMAT (volumetric modulated arc therapy) repeats rapid stop and go operations of a MLC (multileaf collimator) by turning the beam on and off by respiratory gating. The rapid stop and go operations of the MLC during respiratory gated irradiation may induce position error of the MLC and may affect output error and dose distribution. The purpose of this study was to clarify the relationship between the MLC position accuracy of the respiratory gated VMAT and the VMAT parameters. In the method, 1 arc, 2 arcs, and 4 arcs plan were created for the virtual target and irradiation was performed without the gated respiration and with the gated respiration. The respiratory gated system used a RPM (real-time position management system). The MLC position error, gap size error, and the MLC leaf speed were calculated from a log-file. In the histogram of the gap size error, the frequency of falling within the error range up to 0.2 mm was about 12 percentage points higher for the gated respiration. The MLC position error increased with increasing the MLC leaf speed. The correlation coefficient between the MLC leaf speed and the MLC position error exceeded 0.96, showing a strong correlation. Dose rate of VMAT parameters decreased with increasing arc number with the gated respiration and without the gated respiration. Gated irradiation was temporarily stopped, and it decreased by about 27% with respect to the dose rate without the gated respiration. The gantry rotation speed repeated the stop and re-rotation operations when gated irradiation was performed. For all arcs, the rotation speed decreased by about 30% compared with the rotation speed without the gated respiration. The pass rate of gamma analysis for each arc plan was about 95%. No effect on gated irradiation dose distribution was observed. Respiratory gated irradiation reduced dose rate change and gantry rotation speed of the VMAT. Reduction of the MLC leaf speed occurred, and the MLC position error and gap size error decreased. The MLC positional accuracy was secured, and it was confirmed that there was no effect on dose distribution by the respiratory gated VMAT.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Respiración , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda