Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Mol Ecol ; 33(13): e17386, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751195

RESUMEN

One of the key goals of ecology is to understand how communities are assembled. The species co-existence theory suggests that community ß-diversity is influenced by species pool and community assembly processes, such as environmental filtering, dispersal events, ecological drift and biotic interactions. However, it remains unclear whether there are similar ß-diversity patterns among different soil microbial groups and whether all these mechanisms play significant roles in mediating ß-diversity patterns. By conducting a broad survey across Chinese deserts, we aimed to address these questions by investing biological soil crusts (biocrusts). Through amplicon-sequencing, we acquired ß-diversity data for multiple microbial groups, that is, soil total bacteria, diazotrophs, phoD-harbouring taxa, and fungi. Our results have shown varying distance decay rates of ß-diversity across microbial groups, with soil total bacteria showing a weaker distance-decay relationship than other groups. The impact of the species pool on community ß-diversity varied across microbial groups, with soil total bacteria and diazotrophs being significantly influenced. While the contributions of specific assembly processes to community ß-diversity patterns varied among different microbial groups, significant effects of local community assembly processes on ß-diversity patterns were consistently observed across all groups. Homogenous selection and dispersal limitation emerged as crucial processes for all groups. Precipitation and soil C:P were the key factors mediating ß-diversity for all groups. This study has substantially advanced our understanding of how the communities of multiple microbial groups are structured in desert biocrust systems.


Asunto(s)
Bacterias , Biodiversidad , Clima Desértico , Microbiología del Suelo , Bacterias/genética , Bacterias/clasificación , Hongos/genética , Hongos/clasificación , China , Microbiota/genética , Suelo/química
2.
Microb Ecol ; 86(1): 485-496, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35842525

RESUMEN

The assembly mechanisms shaping the elevational patterns of diversity and community structure in ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) are not well understood. We investigated the diversities, co-occurrence network patterns, key drivers, and potential activities of AOA and AOB communities along a large altitudinal gradient. The α-diversity of the AOA communities exhibited a monotonically decreasing pattern with increasing elevation, whereas a sinusoidal pattern was observed for the AOB communities. The mean annual temperature was the single factor that most strongly influenced the α-diversity of the AOA communities; however, the interactions of plant richness, soil conductivity, and total nitrogen made comparable contributions to the α-diversity of the AOB communities. Moreover, the ß-diversities of the AOA and AOB communities were divided into two distinct clusters by elevation, i.e., low- (1800-2600 m) and high-altitude (2800-4100 m) sections. These patterns were attributed mainly to the soil pH, followed by variations in plant richness along the altitudinal gradient. In addition, the AOB communities were more important to the soil nitrification potential in the low-altitude section, whereas the AOA communities contributed more to the soil nitrification potential in the high-altitude section. Overall, this study revealed the key factors shaping the elevational patterns of ammonia-oxidizing communities and might predict the consequences of changes in ammonia-oxidizing communities.


Asunto(s)
Bacterias , Betaproteobacteria , Bacterias/genética , Amoníaco , Microbiología del Suelo , Oxidación-Reducción , Archaea/genética , Suelo , Nitrificación , Filogenia
3.
Environ Res ; 238(Pt 2): 117222, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778601

RESUMEN

Animal carcass decomposition may bring serious harm to the environment, including pathogenic viruses, toxic gases and metabolites, and antibiotic resistance genes (ARGs). However, how wild mammal corpses decomposition influence and change ARGs in the environment has less explored. Through metagenomics, 16S rRNA gene sequencing, and physicochemical analysis, this study explored the succession patterns, influencing factors, and assembly process of ARGs and mobile genetic elements (MGEs) in gravesoil during long-term corpse decomposition of wild mammals. Our results indicate that the ARG and MGE communities related to wildlife corpses exhibited a pattern of differentiation first and then convergence. Different from the farmed animals, the decomposition of wild animals first reduced the diversity of ARGs and MGEs, and then recovered to a level similar to that of the control group (untreated soil). ARGs and MGEs of the gravesoil are mainly affected by deterministic processes in different stages. MGEs and bacterial community are the two most important factors affecting ARGs in gravesoil. It is worth noting that the decomposition of wild animal carcasses enriched different high-risk ARGs at different stages (bacA, mecA and floR), which have co-occurrence patterns with opportunistic pathogens (Comamonas and Acinetobacter), thereby posing a great threat to public health. These results are of great significance for wildlife corpse management and environmental and ecological safety.


Asunto(s)
Antibacterianos , Genes Bacterianos , Animales , ARN Ribosómico 16S , Mamíferos/genética , Cadáver
4.
Appl Microbiol Biotechnol ; 101(13): 5519-5529, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28365795

RESUMEN

The mammalian stomach acts as an important barrier against ingested pathogens into the entire gastrointestinal tract, thereby playing a key role in host health. However, little is known regarding to the stomach microbial compositions in wild mammals and the factors that may influence the community compositions. Using high-throughput sequencing of the 16S rRNA gene, we characterized the stomach bacterial community compositions, diversity, and interactions in two common pika (Ochotona sp.) species in China, including Plateau pikas (Ochotona curzoniae) and Daurian pikas (Ochotona daurica) living in the Qinghai-Tibet Plateau and the Inner Mongolia Grassland, respectively. The bacterial communities can be divided into two distinct phylogenetic clusters. The most dominant bacteria in cluster I were unclassified bacteria. Cluster II was more diverse, predominantly consisting of Bacteroidetes, followed by unclassified bacteria, Firmicutes and Proteobacteria. Three dominant genera (Prevotella, Oscillospira, and Ruminococcus) in pika stomachs were significantly enriched in cluster II. In addition, seasons, host species, and sampling sites as well as body weight and sex had no significant impacts on the composition and diversity of pika stomach communities. Interestingly, Plateau pikas harbored a more complex bacterial network than Daurian pikas, and these two pika species showed different co-occurrence patterns. These results suggested that the pika stomach harbors a diverse but relatively stable and unique bacterial community, which is independent on host (host species, body weight, and sex) and measured environmental factors (sampling sites and seasons). Interestingly, host species shapes the microbial interactions rather than diversity of stomach bacterial communities in pikas, reflecting specific niche adaptation of stomach bacterial communities through species interactions.


Asunto(s)
Tracto Gastrointestinal/microbiología , Especificidad del Huésped , Lagomorpha/microbiología , Consorcios Microbianos , Estómago/microbiología , Animales , Animales Salvajes/microbiología , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , China , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Lagomorpha/anatomía & histología , Filogenia , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S , Estaciones del Año , Tibet
5.
Sci Total Environ ; 861: 160616, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36462659

RESUMEN

Soil fungi can differentially affect plant performance and community dynamics. While fungi play key roles in driving the plant-soil feedbacks (PSFs) that promote grassland succession, it remains unclear how the fungi-mediated PSFs affect tree species establishment during forest succession. We inoculated pioneer broadleaf (Betula platyphylla and Betula albosinensis) and nonpioneer coniferous tree seedlings (Picea asperata and Abies faxoniana) with fungal-dominated rooting zone soils collected from dominant plant species of early-, mid- and late-successional stages in a subalpine forest, and compared their biomass and fungal communities. All tree species accumulated abundant pathogenic fungi in early-successional inoculated soil, which generated negative biotic feedbacks and lowered seedling biomass. High levels of soil ectomycorrhizal fungi from mid- and late-successional stages resulted in positive biotic PSFs and strongly facilitated slow-growing coniferous seedling performance to favour successional development. B. albosinensis also grew better in mid- and late-successional soils with fewer pathogenic fungi than in early-successional soil, indicating its large susceptibility to pathogen attack. In contrast, the growth of another pioneer tree, B. platyphylla, was significantly suppressed in late-successional soil and was mostly driven by saprotrophic fungi, despite the unchanged pathogenic fungal community traits between the two fast-growing species. This unexpected result suggested a host specificity-dependent mechanism involved in the different impacts of fungal pathogens on host trees. Our findings reveal a critical role of functional shifts in soil fungal communities in mediating differential PSFs of tree species across successional stages, which should be considered to improve the prediction and management of community development following forest disturbances.


Asunto(s)
Micobioma , Micorrizas , Árboles/microbiología , Suelo , Bosques , Plantas , Plantones/microbiología , Microbiología del Suelo
6.
Front Microbiol ; 14: 1177239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250033

RESUMEN

Knowledge of variations in abundant and rare soil microbial communities and interactions during secondary forest succession is lacking. Soil samples were gathered from different secondary successional stages (grassland, shrubland, and secondary forest) to study the responses of abundant and rare bacterial and fungal communities, interactions and driving factors to secondary forest succession by Illumina sequencing of the 16S and ITS rRNA genes. The results showed that the α-diversities (Shannon index) of abundant bacteria and fungi revealed no significant changes during secondary forest succession, but increased significantly for rare bacteria. The abundant and rare bacterial and fungal ß-diversities changed significantly during secondary forest succession. Network analysis showed no obvious changes in the topological properties (nodes, links, and average degree) of abundant microbial networks during secondary forest succession. In contrast, these properties of the rare microbial networks in the secondary forest were higher than those in the grassland and shrubland, indicating that rare microbial networks are more responsive to secondary forest succession than abundant microorganisms. Additionally, rare microbial networks revealed more microbial interactions and greater network complexity than abundant microbial networks due to their higher numbers of nodes and links. The keystone species differed between the abundant and rare microbial networks and consisted of 1 and 48 keystone taxa in the abundant and rare microbial networks, respectively. Soil TP was the most important influencing factor of abundant and rare bacterial communities. Successional stages and plant richness had the most important influences on abundant and rare fungal communities, respectively. C:P, SM and N:P were mainly related to abundant and rare microbial network topological properties. Our study indicates that abundant and rare microbial communities, interactions and driving factors respond differently to secondary forest succession.

7.
Sci Total Environ ; 879: 163257, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37011690

RESUMEN

The soil micro-food web is an important network of belowground trophic relationships and it participates directly and indirectly in soil ecological processes. In recent decades, the roles of the soil micro-food web in regulating ecosystem functions in grasslands and agroecosystems have received much attention. However, the variations in the soil micro-food web structure and its relationship with ecosystem functions during forest secondary succession remain unclear. In this study, we investigated how forest secondary succession affected the soil micro-food web (including soil microbes and nematodes) and soil carbon and nitrogen mineralization across a successional sequence of "grasslands - shrublands - broadleaf forests - coniferous forests" in a subalpine region of southwestern China. With forest successional development, the total soil microbial biomass and the biomass of each microbial group generally increased. The significant influences of forest succession on soil nematodes were mainly reflected in several trophic groups with high colonizer-persister values (particularly bacterivore3, herbivore5 and omnivore-predator5) that are sensitive to environmental disturbance. The increases in the connectance and nematode genus richness, diversity, and maturity index indicated an increasingly stable and complex soil micro-food web with forest succession, which was closely related to soil nutrients, particularly the soil carbon contents. Additionally, we found that the soil carbon and nitrogen mineralization rates also exhibited generally increasing trends during forest succession, which had significant positive correlations with the soil micro-food web composition and structure. The path analysis results indicated that the variances in ecosystem functions induced by forest succession were significantly determined by soil nutrients and soil microbial and nematode communities. Overall, these results suggested that forest succession enriched and stabilized the soil micro-food web and promoted ecosystem functions via the increase in soil nutrients, and the soil micro-food web played an important role in regulating ecosystem functions during forest succession.


Asunto(s)
Ecosistema , Nematodos , Animales , Cadena Alimentaria , Suelo/química , Bosques , Carbono , Nitrógeno/análisis , Microbiología del Suelo
8.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3279-3290, 2023 Dec.
Artículo en Zh | MEDLINE | ID: mdl-38511367

RESUMEN

The structural and functional characteristics of soil prokaryotic community are important for maintaining ecosystem functions. In this study, we examined the diversity and compositions, the key drivers, as well as functional characteristics of prokaryotic communities in the rhizosphere and non-rhizosphere soils of Picea asperata with different stand ages using high-throughput sequencing technique and bioinformatics methods. The results showed that ß-diversity of soil prokaryotic communities in both rhizosphere and non-rhizosphere showed significant differences among different stand ages, but no significant difference between rhizosphere and non-rhizosphere in the same stand age. In terms of community composition at the phylum level, the relative abundances of Proteobacteria and Rokubacteria showed an increasing trend with the increases of stand age, while the relative abundance of Actinobacteria showed a decreasing trend, but no significant difference was observed between 75 year-old planted forests (PF75) and natural forests (NF). The relative abundances of Firmicutes and Thaumarchaeota in the soil of the 25 year-old planted forests (PF25) were significantly higher than in other planted forests and NF. At the genus level, the relative abundances of RB41, Terrimonas and Acidibacter showed an increasing trend with the increases of stand age, and RB41 and Terrimonas in rhizosphere soil of PF75 were significantly higher than those in NF. Soil properties and vegetation characteristics jointly influenced the structure of soil prokaryotic communities, with herb layer coverage, soil pH, total phosphorus, and total nitrogen as major drivers. The functional characteristics of soil prokaryotic communities were significantly different among different stand ages. The relative abundances of functions involved in carbon and nitrogen cycle, e.g., cellulolysis and nitrification, decreased with the increases of stand age, whereas that of sulfate respiration involved in the sulfur cycle increased. We proposed that the structure and functional characteristics of soil prokaryotic communities could serve as important indicators of the development stages of P. asperata forests. In the later stages of plantation forest development, soil nutrient availability could be improved by mediating phosphorus-dissolving and nitrogen-enhancing microorganisms to maintain the stability of the plantation ecosystem.


Asunto(s)
Ecosistema , Picea , Suelo/química , Bosques , Microbiología del Suelo , Nitrógeno , Fósforo
9.
Front Plant Sci ; 14: 1212406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484466

RESUMEN

The aboveground carbon sequestration rate (ACSR) of forests serves as an indicator of their carbon sequestration capacity over time, providing insights into the potential carbon sequestration capacity of forest ecosystems. To explore the long-term Spatiotemporal variation of ACSR in the transitional ecotone of the eastern Tibetan Plateau under climate change scenarios, we utilized a forest landscape model that was parameterized with forest inventory data from the eastern Tibetan Plateau to simulate this ecological function changes. The study found that climate warming had significant effect on forests ACSR in different types of forests. ACSR was significantly reduced (p<0.05) in cold temperate coniferous and temperate coniferous forests, whereas it was significantly increased in deciduous broad-leaved forests. However, the impact of climate warming on evergreen broad-leaved forests was found to be negligible. At the species level, climate warming has mostly suppressed the ACSR of coniferous trees, except for Chinese hemlock. The main dominant species, spruce and fir, have been particularly affected. Conversely, the ACSR of most broad-leaved trees has increased due to climate warming. In addition, at the landscape scale, the ACSR within this region is expected to experience a steady decline after 2031s-2036s. Despite the effects of climate warming, this trend is projected to persist. In conclusion, the forests ACSR in this region will be significantly affected by future climate warming. Our research indicates that climate warming will have a noticeable suppressive effect on conifers. It is imperative that this factor be taken into account when devising forest management plans for the future in this region.

10.
mSystems ; 6(6): e0066721, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34726497

RESUMEN

nirK-type and nirS-type denitrifier communities mediate the conversion of nitrite to nitric oxide, which is the key step in denitrification. Results of previous studies have indicated that nirK-type and nirS-type denitrifiers may occupy different niches; however, the mechanisms and drivers of their responses to environmental changes within community assembly are poorly understood. In this study, we evaluated the distribution and assembly of nirK-type and nirS-type denitrifier communities along an elevation gradient from 1,800 to 4,100 m at Mount Gongga, China. Results showed that elevational patterns of alpha diversity in nirK-type and nirS-type denitrifier communities followed hump-backed patterns along the elevation gradient. However, nirK-type denitrifier communities formed two distinct clusters that were primarily separated by elevation, whereas nirS-type denitrifier communities formed three distinct clusters that were primarily separated by forest type along the elevation gradient. Moreover, deterministic processes were dominant in governing the assemblages of nirK-type and nirS-type denitrifiers. Soil pH was a key factor influencing the alpha and beta diversity of the nirK-type denitrifier communities, whereas plant richness was a primary variable influencing nirS-type denitrifiers. Additionally, our work revealed that soil denitrification potential was mainly explained by the variation in the beta diversity of denitrifier communities rather than the alpha diversity of denitrifier communities or denitrifier abundances over a large elevation gradient, and nirK-type denitrifiers played more important roles in soil denitrification. These results may contribute to predicting the consequences of global changes on denitrifier communities and their ecological services. IMPORTANCE Mount Gongga is the highest peak in the Hengduan Mountain region and is located at the southeastern fringe of the Tibetan Plateau, Sichuan Province, southwest China. As a transitional zone between the Tibetan Plateau and Sichuan Basin, Gongga Mountain features particularly diverse topography, geology, climate, and biodiversity and is a globally significant hot spot of biodiversity. In this contribution, we comprehensively describe the diversity and assembly of denitrifier communities along an elevation gradient on Gongga Mountain. Our findings established for the first time that the distribution patterns of beta diversity and driving factors differed between nirK-type and nirS-type denitrifier communities, and deterministic processes were dominant in shaping communities of denitrifiers. Moreover, the beta diversity of denitrifier communities rather than alpha diversity or denitrifier abundance played an important role in explaining denitrification potential, and the beta diversity of nirK-type denitrifier communities was more important than nirS-type denitrifier communities in soil denitrification. This work provides crucial insights into the spatial distribution of denitrifier communities and their ecological function and increases our understanding of the mechanisms underlying spatial distribution of community assembly along large elevation gradients.

11.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1441-1451, 2021 Apr.
Artículo en Zh | MEDLINE | ID: mdl-33899413

RESUMEN

The diversity and interactions of soil fungal community are the key to maintain the diversity and stability of ecosystem. In this study, we examined the structure, diversity and co-occurrence networks of fungal community in rhizosphere and non-rhizosphere soils of planted and natural Picea asperata forests using high-throughput sequencing technique and bioinformatic methods. The results showed that Inocybaceae and Sebacinaceae were dominant family in soils of planted and natural forests, respectively. At the genus level, Inocybe was dominant one in soils of planted and natural forests. There were significant differences in ß-diversity of fungal communities between rhizosphere and non-rhizosphere soils in both planted and natural forests. There were no significant correlations between environmental variables and the relative abundance and α-diversity of fungal communities. Herb layer coverage, soil water content, total organic carbon concentration, and plant species richness played important roles in explaining the variations of ß-diversity of fungal communities. Results of the network analysis showed that the negative correlations were dominant among soil fungal communities in natural forest, suggesting that the competition of different groups in natural forest. Moreover, there were more negative correlations in non-rhizosphere soils than in rhizosphere soils, which indicated that fungal communities in non-rhizosphere soils comprised more competitive network structure than in the rhizosphere soils. Biomarker species were identified based on differential abundance analysis. Sebacinaceae was the single shared keystone species in the fungal network which had significant differences among rhizosphere and non-rhizosphere soils of planted and natural forests. Therefore, it is suggested that the variation of differential species in the soil fungal communities between the planted and natural forest might had limited influence on the stability of the community of planted and natural forests.


Asunto(s)
Micobioma , Picea , Ecosistema , Bosques , Hongos/genética , Rizosfera , Suelo , Microbiología del Suelo
12.
FEMS Microbiol Ecol ; 96(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32109277

RESUMEN

Understanding microbial network assembly is a promising way to predict potential impacts of environmental changes on ecosystem functions. Yet, soil microbial network assembly in mountain ecosystems and its underlying mechanisms remain elusive. Here, we characterized soil microbial co-occurrence networks across 12 altitudinal sites in Mountain Gongga. Despite differences in habitats, soil bacterial networks separated into two different clusters by altitude, namely the lower and higher altitudes, while fungi did not show such a pattern. Bacterial networks encompassed more complex and closer relationships at the lower altitudes, while fungi had closer relationships at the higher altitudes, which could be attributed to niche differentiation caused by high variations in soil environments and plant communities. Both abiotic and biotic factors (e.g. soil pH and bacterial community composition) shaped bacterial networks. However, biotic factors played more important roles than the measured abiotic factors for fungal network assembly. Further analyses suggest that multiple mechanisms including niche overlap/differentiation, cross-feeding and competition between microorganisms could play important roles in shaping soil microbial networks. This study reveals microbial co-occurrence networks in response to different ecological factors, which provides important insights into our comprehensive understanding of microbial network assembly and their functional potentials in mountain ecosystems.


Asunto(s)
Ecosistema , Suelo , Bacterias/genética , Hongos , Microbiología del Suelo
13.
Sci Total Environ ; 669: 62-69, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30878941

RESUMEN

Denitrification is an important process that influences nitrogen (N) loss and the production of greenhouse gas in grassland soils. However, the relative contributions of abiotic and biotic factors to soil denitrification potential at the regional and sub-regional scales in grassland ecosystems remain elusive. In this study, soil samples were collected from 21 sites at three steppes of China, including the Inner Mongolia Plateau (IMP), the Xinjiang Autonomous Region (XAR) and the Tibetan Plateau (TP) grasslands. Results showed that the key factors controlling the denitrification potential were regional and scale-dependent. At the sub-regional scales, soil pH, aridity index (AI) and total organic carbon (TOC) explained the highest variances on denitrification potential in the IMP, XAR and TP steppe, respectively. At the regional scale, the mean annual precipitation (MAP) was the most important environmental driver for the denitrification potential. Partial least squares (PLS) path modeling revealed that the MAP might regulate denitrification potential directly and indirectly by its effects on the plant and soil properties. Overall, these results help to improve our understandings on the prediction of the denitrification potential under global changes and revealed that the denitrification potential at various scales could be regulated by the multiple interactions of abiotic and biotic factors.


Asunto(s)
Bacterias/metabolismo , Clima , Desnitrificación , Pradera , Microbiología del Suelo , Suelo/química , China , Geografía
14.
Front Microbiol ; 9: 569, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636740

RESUMEN

Ecological understandings of soil bacterial community succession and assembly mechanism along elevational gradients in mountains remain not well understood. Here, by employing the high-throughput sequencing technique, we systematically examined soil bacterial diversity patterns, the driving factors, and community assembly mechanisms along the elevational gradients of 1800-4100 m on Gongga Mountain in China. Soil bacterial diversity showed an extraordinary stair-step pattern along the elevational gradients. There was an abrupt decrease of bacterial diversity between 2600 and 2800 m, while no significant change at either lower (1800-2600 m) or higher (2800-4100 m) elevations, which coincided with the variation in soil pH. In addition, the community structure differed significantly between the lower and higher elevations, which could be primarily attributed to shifts in soil pH and vegetation types. Although there was no direct effect of MAP and MAT on bacterial community structure, our partial least squares path modeling analysis indicated that bacterial communities were indirectly influenced by climate via the effect on vegetation and the derived effect on soil properties. As for bacterial community assembly mechanisms, the null model analysis suggested that environmental filtering played an overwhelming role in the assembly of bacterial communities in this region. In addition, variation partition analysis indicated that, at lower elevations, environmental attributes explained much larger fraction of the ß-deviation than spatial attributes, while spatial attributes increased their contributions at higher elevations. Our results highlight the importance of environmental filtering, as well as elevation-related spatial attributes in structuring soil bacterial communities in mountain ecosystems.

15.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334191

RESUMEN

Temperate steppe is extremely sensitive to the current global changes. However, what are the main environmental variables driving microbial diversity in temperate steppe are still unclear, something that impairs doing predictions about the expected effects of global changes on microbe-mediated ecological functions. This is why, in this study, the relationship between soil microbial diversity and environmental variables in Chinese temperate steppe is investigated. In this study, significant correlations between soil bacterial α-diversity and mean annual precipitation and the aridity index were observed at the whole region scale. No clear correlations between microbial α-diversities and other measured environmental variables were found at the whole temperate steppe region and sub-regions. On the other hand, ß-diversity was strongly related to spatial variables and climate variables for bacteria, while spatial variables and soil organic matters were more related with fungal ß-diversity. In addition, the mean annual temperature was highly correlated with microbial ß-diversity at different spatial scales, suggesting that it could be a good single predictor of soil microbial assemblage in temperate steppe. ß-Diversities are more explained by combined effect of local environmental variables based on variation partitioning analysis, reflecting the community assemblage is more likely driven by species sorting through environmental filtering.


Asunto(s)
Biodiversidad , Variación Genética , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , China , Clima , Ecosistema , Hongos/clasificación , Hongos/genética , Suelo , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda