RESUMEN
The hippocampus plays a key role in learning and memory. Previous studies suggested that the main types of principal neurons, dentate gyrus granule cells (GCs), CA3 pyramidal neurons, and CA1 pyramidal neurons, differ in their activity pattern, with sparse firing in GCs and more frequent firing in CA3 and CA1 pyramidal neurons. It has been assumed but never shown that such different activity may be caused by differential synaptic excitation. To test this hypothesis, we performed high-resolution whole-cell patch-clamp recordings in anesthetized rats in vivo. In contrast to previous in vitro data, both CA3 and CA1 pyramidal neurons fired action potentials spontaneously, with a frequency of â¼3-6 Hz, whereas GCs were silent. Furthermore, both CA3 and CA1 cells primarily fired in bursts. To determine the underlying mechanisms, we quantitatively assessed the frequency of spontaneous excitatory synaptic input, the passive membrane properties, and the active membrane characteristics. Surprisingly, GCs showed comparable synaptic excitation to CA3 and CA1 cells and the highest ratio of excitation versus hyperpolarizing inhibition. Thus, differential synaptic excitation is not responsible for differences in firing. Moreover, the three types of hippocampal neurons markedly differed in their passive properties. While GCs showed the most negative membrane potential, CA3 pyramidal neurons had the highest input resistance and the slowest membrane time constant. The three types of neurons also differed in the active membrane characteristics. GCs showed the highest action potential threshold, but displayed the largest gain of the input-output curves. In conclusion, our results reveal that differential firing of the three main types of hippocampal principal neurons in vivo is not primarily caused by differences in the characteristics of the synaptic input, but by the distinct properties of synaptic integration and input-output transformation.
Asunto(s)
Potenciales de Acción/fisiología , Anestesia , Fenómenos Biofísicos/fisiología , Hipocampo/citología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Fenómenos Biofísicos/efectos de los fármacos , Biofisica , Estimulación Eléctrica , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Transmisión Sináptica/efectos de los fármacosRESUMEN
Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs become motile following the induction of epileptiform activity, resulting in GCD. Hippocampal slice cultures from transgenic mice expressing green fluorescent protein in differentiated, but not in newly generated GCs, were incubated with the glutamate receptor agonist kainate (KA), which induced GC burst activity and GCD. Using real-time microscopy, we observed that KA-exposed, differentiated GCs translocated their cell bodies and changed their dendritic organization. As found in human TLE, KA application was associated with decreased expression of the extracellular matrix protein Reelin, particularly in hilar interneurons. Together these findings suggest that KA-induced motility of differentiated GCs contributes to the development of GCD and establish slice cultures as a model to study neuronal changes induced by epileptiform activity.
Asunto(s)
Epilepsia/patología , Epilepsia/fisiopatología , Neuronas/patología , Neuronas/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Cuerpo Celular/patología , Cuerpo Celular/fisiología , Movimiento Celular , Dendritas/fisiología , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Interneuronas/patología , Interneuronas/fisiología , Ácido Kaínico , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo , Técnicas de Cultivo de TejidosRESUMEN
The extracellular matrix molecule Reelin is known to control neuronal migration during development. Recent evidence suggests that it also plays a role in the maturation of postsynaptic dendrites and spines as well as in synaptic plasticity. Here, we aimed to address the question whether Reelin plays a role in presynaptic structural organization and function. Quantitative electron microscopic analysis of the number of presynaptic boutons in the stratum radiatum of hippocampal region CA1 did not reveal differences between wild-type animals and Reelin-deficient reeler mutant mice. However, additional detailed analysis showed that the number of presynaptic vesicles was significantly increased in CA1 synapses of reeler mutants. To test the hypothesis that vesicle fusion is altered in reeler, we studied proteins known to control transmitter release. SNAP25, a protein of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, was found to be significantly reduced in reeler mutants, whereas other SNARE complex proteins remained unaltered. Addition of recombinant Reelin to organotypic slice cultures of reeler hippocampi substantially rescued not only SNAP25 protein expression levels but also the number of vesicles per bouton area indicating a role for Reelin in presynaptic functions. Next, we analyzed paired-pulse facilitation, a presynaptic mechanism associated with transmitter release, and observed a significant decrease at CA1 synapses of reeler mutants when compared with wild-type animals. Together, these novel findings suggest a role for Reelin in modulating presynaptic release mechanisms.
Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Proteínas de la Matriz Extracelular/fisiología , Proteínas del Tejido Nervioso/fisiología , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Serina Endopeptidasas/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Región CA1 Hipocampal/citología , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/inmunología , Moléculas de Adhesión Celular Neuronal/farmacología , Línea Celular Transformada , Clatrina/metabolismo , Medios de Cultivo Condicionados/farmacología , Tomografía con Microscopio Electrónico/métodos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/inmunología , Proteínas de la Matriz Extracelular/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas In Vitro , Integrina beta1/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/farmacología , Técnicas de Placa-Clamp , Terminales Presinápticos/ultraestructura , Proteínas R-SNARE/metabolismo , Receptores de LDL/genética , Proteína Reelina , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/ultraestructura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Proteína 25 Asociada a Sinaptosomas/metabolismo , Transfección/métodosRESUMEN
The mammalian cortex exhibits a laminated structure that may underlie optimal synaptic connectivity and support temporally precise activation of neurons. In 'reeler' mice, the lack of the extracellular matrix protein Reelin leads to abnormal positioning of cortical neurons and disrupted layering. To address how these structural changes impact neuronal function, we combined electrophysiological and neuroanatomical techniques to investigate the synaptic activation of hippocampal mossy cells (MCs), the cell type that integrates the output of dentate gyrus granule cells (GCs). While somatodendritic domains of wild-type (WT) MCs were confined to the hilus, the somata and dendrites of reeler MCs were often found in the molecular layer, where the perforant path (PP) terminates. Most reeler MCs received aberrant monosynaptic excitatory input from the PP, whereas the disynaptic input to MCs via GCs was decreased and inhibition was increased. In contrast to the uniform disynaptic discharge of WT MCs, many reeler cells discharged with short, monosynaptic latencies, while others fired with long latencies over a broad temporal window in response to PP activation. Thus, disturbed lamination results in aberrant synaptic connectivity and altered timing of action potential generation. These results highlight the importance of a layered cortical structure for information processing.