Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Cardiovasc Res ; 3(9): 1049-1066, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39215106

RESUMEN

Myocardial injury may ultimately lead to adverse ventricular remodeling and development of heart failure (HF), which is a major cause of morbidity and mortality worldwide. Given the slow pace and substantial costs of developing new therapeutics, drug repurposing is an attractive alternative. Studies of many organs, including the heart, highlight the importance of the immune system in modulating injury and repair outcomes. Glatiramer acetate (GA) is an immunomodulatory drug prescribed for patients with multiple sclerosis. Here, we report that short-term GA treatment improves cardiac function and reduces scar area in a mouse model of acute myocardial infarction and a rat model of ischemic HF. We provide mechanistic evidence indicating that, in addition to its immunomodulatory functions, GA exerts beneficial pleiotropic effects, including cardiomyocyte protection and enhanced angiogenesis. Overall, these findings highlight the potential repurposing of GA as a future therapy for a myriad of heart diseases.


Asunto(s)
Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Acetato de Glatiramer , Animales , Acetato de Glatiramer/uso terapéutico , Acetato de Glatiramer/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Ratas , Ratones , Insuficiencia Cardíaca/tratamiento farmacológico , Función Ventricular Izquierda/efectos de los fármacos , Ratas Sprague-Dawley , Células Cultivadas , Remodelación Ventricular/efectos de los fármacos
2.
Cell Rep ; 42(8): 112864, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494182

RESUMEN

Lymphocyte priming in lymph nodes (LNs) was postulated to depend on the formation of stable T cell receptor (TCR)-specific immune synapses (ISs) with antigen (Ag)-presenting dendritic cells (DCs). The high-affinity LFA-1 ligand ICAM-1 was implicated in different ISs studied in vitro. We dissect the in vivo roles of endogenous DC ICAM-1 in Ag-stimulated T cell proliferation and differentiation and find that under type 1 polarizing conditions in vaccinated or vaccinia virus-infected skin-draining LNs, Ag-presenting DCs engage in ICAM-1-dependent stable conjugates with a subset of Ag-specific CD8 blasts. Nevertheless, in the absence of these conjugates, CD8 lymphocyte proliferation and differentiation into functional cytotoxic T cells (CTLs) and skin homing effector lymphocytes takes place normally. Our results suggest that although CD8 T cell blasts engage in tight ICAM-1-dependent DC-T ISs, firm ISs are dispensable for TCR-triggered proliferation and differentiation into productive effector lymphocytes.


Asunto(s)
Células Dendríticas , Molécula 1 de Adhesión Intercelular , Molécula 1 de Adhesión Intercelular/metabolismo , Células Dendríticas/metabolismo , Linfocitos T CD8-positivos , Activación de Linfocitos , Antígenos/metabolismo , Diferenciación Celular , Receptores de Antígenos de Linfocitos T/metabolismo
3.
Cancer Immunol Immunother ; 61(10): 1833-47, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22441657

RESUMEN

Adoptive cell transfer therapy with reactive T cells is one of the most promising immunotherapeutic modalities for metastatic melanoma patients. Homing of the transferred T cells to all tumor sites in sufficient numbers is of great importance. Here, we seek to exploit endogenous chemotactic signals in order to manipulate and enhance the directional trafficking of transferred T cells toward melanoma. Chemokine profiling of 15 melanoma cultures shows that CXCL1 and CXCL8 are abundantly expressed and secreted from melanoma cultures. However, the complimentary analysis on 40 melanoma patient-derived tumor-infiltrating lymphocytes (TIL) proves that the corresponding chemokine receptors are either not expressed (CXCR2) or expressed at low levels (CXCR1). Using the in vitro transwell system, we demonstrate that TIL cells preferentially migrate toward melanoma and that endogenously expressing CXCR1 TIL cells are significantly enriched among the migrating lymphocytes. The role of the chemokines CXCL1 and CXCL8 is demonstrated by partial abrogation of this enrichment with anti-CXCL1 and anti-CXCL8 neutralizing antibodies. The role of the chemokine receptor CXCR1 is validated by the enhanced migration of CXCR1-engineered TIL cells toward melanoma or recombinant CXCL8. Cytotoxicity and IFNγ secretion activity are unaltered by CXCR1 expression profile. Taken together, these results mark CXCR1 as a candidate for genetic manipulations to enhance trafficking of adoptively transferred T cells. This approach is complimentary and potentially synergistic with other genetic strategies designed to enhance anti-tumor potency.


Asunto(s)
Movimiento Celular/inmunología , Inmunoterapia Adoptiva/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/terapia , Receptores de Interleucina-8A/inmunología , Neoplasias Cutáneas/terapia , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Quimiocinas/biosíntesis , Quimiocinas/inmunología , Quimiocinas/metabolismo , Humanos , Melanoma/inmunología , Receptores de Interleucina-8A/antagonistas & inhibidores , Neoplasias Cutáneas/inmunología , Células Tumorales Cultivadas
4.
Front Immunol ; 13: 1041552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36895258

RESUMEN

αLß2 (LFA-1) mediated interactions with ICAM-1 and ICAM-2 predominate leukocyte-vascular interactions, but their functions in extravascular cell-cell communications is still debated. The roles of these two ligands in leukocyte trafficking, lymphocyte differentiation, and immunity to influenza infections were dissected in the present study. Surprisingly, double ICAM-1 and ICAM-2 knock out mice (herein ICAM-1/2-/- mice) infected with a lab adapted H1N1 influenza A virus fully recovered from infection, elicited potent humoral immunity, and generated normal long lasting anti-viral CD8+ T cell memory. Furthermore, lung capillary ICAMs were dispensable for both NK and neutrophil entry to virus infected lungs. Mediastinal lymph nodes (MedLNs) of ICAM-1/2-/- mice poorly recruited naïve T cells and B lymphocytes but elicited normal humoral immunity critical for viral clearance and effective CD8+ differentiation into IFN-γ producing T cells. Furthermore, whereas reduced numbers of virus specific effector CD8+ T cells accumulated inside infected ICAM-1/2-/- lungs, normal virus-specific TRM CD8+ cells were generated inside these lungs and fully protected ICAM-1/2-/- mice from secondary heterosubtypic infections. B lymphocyte entry to the MedLNs and differentiation into extrafollicular plasmablasts, producing high affinity anti-influenza IgG2a antibodies, were also ICAM-1 and ICAM-2 independent. A potent antiviral humoral response was associated with accumulation of hyper-stimulated cDC2s in ICAM null MedLNs and higher numbers of virus-specific T follicular helper (Tfh) cells generated following lung infection. Mice selectively depleted of cDC ICAM-1 expression supported, however, normal CTL and Tfh differentiation following influenza infection, ruling out essential co-stimulatory functions of DC ICAM-1 in CD8+ and CD4+ T cell differentiation. Collectively our findings suggest that lung ICAMs are dispensable for innate leukocyte trafficking to influenza infected lungs, for the generation of peri-epithelial TRM CD8+ cells, and long term anti-viral cellular immunity. In lung draining LNs, although ICAMs promote lymphocyte homing, these key integrin ligands are not required for influenza-specific humoral immunity or generation of IFN-γ effector CD8+ T cells. In conclusion, our findings suggest unexpected compensatory mechanisms that orchestrate protective anti-influenza immunity in the absence of vascular and extravascular ICAMs.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Ratones , Animales , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Linfocitos T CD8-positivos , Antivirales , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Moléculas de Adhesión Celular/metabolismo , Inmunidad Celular , Antígenos CD/metabolismo
5.
Front Immunol ; 13: 849701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911772

RESUMEN

Breast tumors and their derived circulating cancer cells express the leukocyte ß2 integrin ligand Intercellular adhesion molecule 1 (ICAM-1). We found that elevated ICAM-1 expression in breast cancer cells results in a favorable outcome and prolonged survival of breast cancer patients. We therefore assessed the direct in vivo contribution of ICAM-1 expressed by breast cancer cells to breast tumorigenesis and lung metastasis in syngeneic immunocompetent mice hosts using spontaneous and experimental models of the lung metastasis of the C57BL/6-derived E0771 cell line, a luminal B breast cancer subtype. Notably, the presence of ICAM-1 on E0771 did not alter tumor growth or the leukocyte composition in the tumor microenvironment. Interestingly, the elimination of Tregs led to the rapid killing of primary tumor cells independently of tumor ICAM-1 expression. The in vivo elimination of a primary E0771 tumor expressing the ovalbumin (OVA) model neoantigen by the OVA-specific OVA-tcr-I mice (OT-I) transgenic cytotoxic T lymphocytes (CTLs) also took place normally in the absence of ICAM-1 expression by E0771 breast cancer target cells. The whole lung imaging of these cells by light sheet microscopy (LSM) revealed that both Wild type (WT)- and ICAM-1-deficient E0771 cells were equally disseminated from resected tumors and accumulated inside the lung vasculature at similar magnitudes. ICAM-1-deficient breast cancer cells developed, however, much larger metastatic lesions than their control counterparts. Strikingly, the vast majority of these cells gave rise to intravascular tumor colonies both in spontaneous and experimental metastasis models. In the latter model, ICAM-1 expressing E0771- but not their ICAM-1-deficient counterparts were highly susceptible to elimination by neutrophils adoptively transferred from E0771 tumor-bearing donor mice. Ex vivo, neutrophils derived from tumor-bearing mice also killed cultured E0771 cells via ICAM-1-dependent interactions. Collectively, our results are a first indication that ICAM-1 expressed by metastatic breast cancer cells that expand inside the lung vasculature is involved in innate rather than in adaptive cancer cell killing. This is also a first indication that the breast tumor expression of ICAM-1 is not required for CTL-mediated killing but can function as a suppressor of intravascular breast cancer metastasis to lungs.


Asunto(s)
Neoplasias Pulmonares , Linfocitos T Citotóxicos , Animales , Línea Celular Tumoral , Molécula 1 de Adhesión Intercelular/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ovalbúmina , Microambiente Tumoral
6.
Nat Rev Immunol ; 21(1): 49-64, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33214719

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Understanding of the fundamental processes underlying the versatile clinical manifestations of COVID-19 is incomplete without comprehension of how different immune cells are recruited to various compartments of virus-infected lungs, and how this recruitment differs among individuals with different levels of disease severity. As in other respiratory infections, leukocyte recruitment to the respiratory system in people with COVID-19 is orchestrated by specific leukocyte trafficking molecules, and when uncontrolled and excessive it results in various pathological complications, both in the lungs and in other organs. In the absence of experimental data from physiologically relevant animal models, our knowledge of the trafficking signals displayed by distinct vascular beds and epithelial cell layers in response to infection by SARS-CoV-2 is still incomplete. However, SARS-CoV-2 and influenza virus elicit partially conserved inflammatory responses in the different respiratory epithelial cells encountered early in infection and may trigger partially overlapping combinations of trafficking signals in nearby blood vessels. Here, we review the molecular signals orchestrating leukocyte trafficking to airway and lung compartments during primary pneumotropic influenza virus infections and discuss potential similarities to distinct courses of primary SARS-CoV-2 infections. We also discuss how an imbalance in vascular activation by leukocytes outside the airways and lungs may contribute to extrapulmonary inflammatory complications in subsets of patients with COVID-19. These multiple molecular pathways are potential targets for therapeutic interventions in patients with severe COVID-19.


Asunto(s)
COVID-19/inmunología , Movimiento Celular/inmunología , Gripe Humana/inmunología , Leucocitos/inmunología , Pulmón/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/epidemiología , COVID-19/virología , Citocinas/inmunología , Citocinas/metabolismo , Epidemias , Humanos , Gripe Humana/virología , Leucocitos/metabolismo , Pulmón/metabolismo , Pulmón/virología , SARS-CoV-2/fisiología
7.
Cell Adh Migr ; 13(1): 315-321, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31328672

RESUMEN

It is unclear if naïve T cells require dendritic cell ICAMs to proliferate inside lymph nodes. To check if and when CD4 lymphocytes use ICAMs on migratory DCs, wild-type and ICAM-1 and 2 double knock out bone marrow-derived DCs pulsed with saturating levels of an OT-II transgene-specific ovalbumin-derived peptide were co-transferred into skin-draining lymph nodes. Intravital imaging of OT-II lymphocytes entering these lymph nodes revealed that ICAM-1 and -2 deficient migratory DCs formed fewer stable conjugates with OT-II lymphocytes but promoted normal T cell proliferation. DC ICAMs were also not required for unstable TCR-dependent lymphocyte arrests on antigen presenting migratory DCs. Thus, rare antigen-stimulated ICAM-stabilized T-DC conjugates are dispensable for CD4 lymphocyte proliferation inside lymph nodes.


Asunto(s)
Antígenos CD/metabolismo , Linfocitos T CD4-Positivos/inmunología , Moléculas de Adhesión Celular/metabolismo , Células Dendríticas/inmunología , Molécula 1 de Adhesión Intercelular/metabolismo , Ganglios Linfáticos/metabolismo , Animales , Antígenos CD/genética , Linfocitos T CD4-Positivos/citología , Moléculas de Adhesión Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Dendríticas/citología , Molécula 1 de Adhesión Intercelular/genética , Lipopolisacáridos/inmunología , Ganglios Linfáticos/citología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Cell Rep ; 22(4): 849-859, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29420172

RESUMEN

Protective immune responses depend on the formation of immune synapses between T cells and antigen-presenting cells (APCs). The two main LFA-1 ligands, ICAM-1 and ICAM-2, are co-expressed on many cell types, including APCs and blood vessels. Although these molecules were suggested to be key players in immune synapses studied in vitro, their contribution to helper T cell priming in vivo is unclear. Here, we used transgenic mice and intravital imaging to examine the role of dendritic cell (DC) ICAM-1 and ICAM-2 in naive CD4 T cell priming and differentiation in skin-draining lymph nodes. Surprisingly, ICAM deficiency on endogenous CD40-stimulated lymph node DCs did not impair their ability to arrest and prime CD4 lymphocyte activation and differentiation into Th1 and Tfh effectors. Thus, functional T cell receptor (TCR)-specific helper T cell synapses with antigen-presenting DCs and subsequent proliferation and early differentiation into T effectors do not require LFA-1-mediated T cell adhesiveness to DC ICAMs.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Molécula 1 de Adhesión Intercelular/genética , Ganglios Linfáticos/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda