Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant Physiol ; 182(2): 933-948, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31818903

RESUMEN

MADS box transcription factors (TFs) are subdivided into type I and II based on phylogenetic analysis. The type II TFs regulate floral organ identity and flowering time, but type I TFs are relatively less characterized. Here, we report the functional characterization of two type I MADS box TFs in rice (Oryza sativa), MADS78 and MADS79 Transcript abundance of both these genes in developing seed peaked at 48 h after fertilization and was suppressed by 96 h after fertilization, corresponding to syncytial and cellularized stages of endosperm development, respectively. Seeds overexpressing MADS78 and MADS 79 exhibited delayed endosperm cellularization, while CRISPR-Cas9-mediated single knockout mutants showed precocious endosperm cellularization. MADS78 and MADS 79 were indispensable for seed development, as a double knockout mutant failed to make viable seeds. Both MADS78 and 79 interacted with MADS89, another type I MADS box, which enhances nuclear localization. The expression analysis of Fie1, a rice FERTILIZATION-INDEPENDENT SEED-POLYCOMB REPRESSOR COMPLEX2 component, in MADS78 and 79 mutants and vice versa established an antithetical relation, suggesting that Fie1 could be involved in negative regulation of MADS78 and MADS 79 Misregulation of MADS78 and MADS 79 perturbed auxin homeostasis and carbon metabolism, as evident by misregulation of genes involved in auxin transport and signaling as well as starch biosynthesis genes causing structural abnormalities in starch granules at maturity. Collectively, we show that MADS78 and MADS 79 are essential regulators of early seed developmental transition and impact both seed size and quality in rice.


Asunto(s)
Endospermo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Dominio MADS/metabolismo , Oryza/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Carbono/metabolismo , Núcleo Celular/metabolismo , Endospermo/genética , Endospermo/metabolismo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Ácidos Indolacéticos/metabolismo , Proteínas de Dominio MADS/genética , Microscopía Electrónica de Rastreo , Oryza/genética , Oryza/metabolismo , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/genética , Polen/metabolismo , Proteínas del Grupo Polycomb/metabolismo , RNA-Seq , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/ultraestructura , Factores de Transcripción/metabolismo , Regulación hacia Arriba
2.
Physiol Plant ; 169(4): 501-514, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32314362

RESUMEN

Unraveling the metabolic and phytohormonal changes in anthers exposed to heat stress would help identify mechanisms regulating heat stress tolerance during the sensitive reproductive stage. Two spring wheat genotypes contrasting for heat tolerance were exposed to heat stress during heading in controlled environment chambers. Anthers were collected from main and primary spikes for metabolic and phytohormonal profiling. A significant reduction in seed set (38%), grain number (54%) and grain weight (52%) per plant was recorded in the sensitive (KSG1177) but not in the tolerant (KSG1214) genotype under heat stress compared to control. Anther metabolite accumulation did not vary quantitatively between main and primary spikes. Hierarchical clustering of the genotypes and treatments using metabolites and phytohormones revealed a distinct cluster for KSG1177 under heat stress from that of control and KSG1214. A significant increase in N-based amino acids, ABA, IAA-conjugate and a decrease in polyamines and organic acids were observed in wheat anthers exposed to heat stress. Unlike KSG1214, a significantly higher accumulation of amino acids, ABA and IAA-conjugate in anthers of the sensitive KSG1177 was recorded under heat stress. These findings provide the rationale and direction towards developing molecular markers for enhancing heat stress tolerance in wheat.


Asunto(s)
Grano Comestible , Triticum/genética , Respuesta al Choque Térmico , Reguladores del Crecimiento de las Plantas , Semillas
3.
Plant Cell Environ ; 42(4): 1233-1246, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30471235

RESUMEN

Carbon loss under high night-time temperature (HNT) leads to significant reduction in wheat yield. Growth chamber studies were carried out using six winter wheat genotypes, to unravel postheading HNT (23°C)-induced alterations in carbon balance, source-sink metabolic changes, yield, and yield-related traits compared with control (15°C) conditions. Four of the six tested genotypes recorded a significant increase in night respiration after 4 days of HNT exposure, with all the cultivars regulating carbon loss and demonstrating different degree of acclimation to extended HNT exposure. Metabolite profiling indicated carbohydrate metabolism in spikes and activation of the TriCarboxylic Acid (TCA) cycle in leaves as important pathways operating under HNT exposure. A significant increase in sugars, sugar-alcohols, and phosphate in spikes of the tolerant genotype (Tascosa) indicated osmolytes and membrane protective mechanisms acting against HNT damage. Enhanced night respiration under HNT resulted in higher accumulation of TCA cycle intermediates like isocitrate and fumarate in leaves of the susceptible genotype (TX86A5606). Lower grain number due to lesser productive spikes and reduced grain weight due to shorter grain-filling duration determined HNT-induced yield loss in winter wheat. Traits and mechanisms identified will help catalyze the development of physiological and metabolic markers for breeding HNT-tolerant wheat.


Asunto(s)
Carbono/metabolismo , Triticum/metabolismo , Secuestro de Carbono , Ritmo Circadiano , Calor , Metabolómica , Fotosíntesis , Triticum/crecimiento & desarrollo , Triticum/fisiología
4.
Plant Cell ; 20(7): 1818-32, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18628352

RESUMEN

In prokaryotes, PurU (10-formyl tetrahydrofolate [THF] deformylase) metabolizes 10-formyl THF to formate and THF for purine and Gly biosyntheses. The Arabidopsis thaliana genome contains two putative purU genes, At4g17360 and At5g47435. Knocking out these genes simultaneously results in plants that are smaller and paler than the wild type. These double knockout (dKO) mutant plants show a 70-fold increase in Gly levels and accumulate elevated levels of 5- and 10-formyl THF. Embryo development in dKO mutants arrests between heart and early bent cotyledon stages. Mature seeds are shriveled, accumulate low amounts of lipids, and fail to germinate. However, the dKO mutant is only conditionally lethal and is rescued by growth under nonphotorespiratory conditions. In addition, culturing dKO siliques in the presence of sucrose restores normal embryo development and seed viability, suggesting that the seed and embryo development phenotypes are a result of a maternal effect. Our findings are consistent with the involvement of At4g17360 and At5g47435 proteins in photorespiration, which is to prevent excessive accumulation of 5-formyl THF, a potent inhibitor of the Gly decarboxylase/Ser hydroxymethyltransferase complex. Supporting this role, deletion of the At2g38660 gene that encodes the bifunctional 5,10-methylene THF dehydrogenase/5,10-methenyl THF cyclohydrolase that acts upstream of 5-formyl THF formation restored the wild-type phenotype in dKO plants.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fotosíntesis/fisiología , Amidohidrolasas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Ácido Fólico/metabolismo , Formiatos/metabolismo , Formiltetrahidrofolatos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Datos de Secuencia Molecular , Mutación , Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Homología de Secuencia de Aminoácido , Sacarosa/farmacología
5.
Planta ; 226(4): 1053-8, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17530285

RESUMEN

Hexokinase, a hexose-phosphorylating enzyme, has emerged as a central enzyme in sugar-sensing processes. A few HXK isozymes have been identified in various plant species. These isozymes have been classified into two major groups; plastidic (type A) isozymes located in the plastid stroma and those containing a membrane anchor domain (type B) located mainly adjacent to the mitochondria, but also found in the nucleus. Of all the hexokinases that have been characterized to date, the only exception to this rule is a spinach type B HXK (SoHXK1) that, by means of subcellular fractionation, has been localized to the outer membrane of plastids. However, SoHXK1 has a membrane anchor domain that is almost identical to that of the other type B HXKs. To determine the localization of SoHXK1 enzyme by other means, we expressed SoHXK1::GFP fusion protein in tobacco and Arabidopsis protoplasts and compared its localization with that of the Arabidopsis AtHXK1::GFP fusion protein that shares a similar N-terminal membrane anchor domain. SoHXK1::GFP is localized adjacent to the mitochondria, similar to AtHXK1::GFP and all other previously examined type B HXKs. Proteomic analysis had previously identified AtHXK1 on the outside of the mitochondrial membrane. We, therefore, suggest that SoHXK1 enzyme is located adjacent to the mitochondria like the other type B HXKs that share the same N-terminal membrane anchor domain.


Asunto(s)
Hexoquinasa/metabolismo , Mitocondrias/enzimología , Spinacia oleracea/enzimología , Secuencia de Aminoácidos , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hexoquinasa/genética , Datos de Secuencia Molecular
6.
Plant Mol Biol ; 55(1): 17-32, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15604662

RESUMEN

When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degrees C. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria , 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria.


Asunto(s)
Carbono/metabolismo , Etiquetas de Secuencia Expresada , Lípido A/biosíntesis , Plastidios/metabolismo , Rhodophyta/genética , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico , ADN Complementario/química , ADN Complementario/genética , Metabolismo Energético/genética , Ácidos Grasos/metabolismo , Biblioteca de Genes , Hexoquinasa/genética , Concentración de Iones de Hidrógeno , Metabolismo de los Lípidos , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/genética , Consumo de Oxígeno , Proteínas de Transporte de Fosfato/genética , Fotosíntesis/genética , Filogenia , Rhodophyta/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda