Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499279

RESUMEN

Nitric oxide (NO) has been recognized as a gasotransmitter in the mainstream of plant research since the beginning of the 21st century. It is produced in plant tissue and the environment. It influences plant physiology during every ontogenetic stage from seed germination to plant senescence. In this review, we demonstrate the increased interest in NO as a regulatory molecule in combination with other signalling molecules and phytohormones in the information network of plant cells. This work is a summary of the current knowledge on NO action in seeds, starting from seed pretreatment techniques applied to increase seed quality. We describe mode of action of NO in the regulation of seed dormancy, germination, and aging. During each stage of seed physiology, NO appears to act as a key agent with a predominantly beneficial effect.


Asunto(s)
Óxido Nítrico , Latencia en las Plantas , Óxido Nítrico/metabolismo , Latencia en las Plantas/fisiología , Germinación/fisiología , Semillas/metabolismo , Reguladores del Crecimiento de las Plantas , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Nitric Oxide ; 68: 38-50, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27890695

RESUMEN

Nitric oxide (NO) and polyamines (PAs) belong to plant growth and development regulators. These compounds play a key role in numerous physiological processes e.g. seed germination. Based on the suggestion of overlapping of NO and PAs biosynthetic pathways, we demonstrated a cross-talk of NO and PAs in regulation of embryonic dormancy release. The aim of the work was to investigate an impact of PAs (Put, Spd and Spm) or NO short-term fumigation on nitrite, urea, Arg and ornithine (Orn) content, NO synthase-like (NOS-like) and arginase activity in axes of apple (Malus domestica Borkh.) embryos during dormancy alleviation and at the stage of termination of germination sensu stricto. NO, Put/Spd induced dormancy breakage and germination of apple embryos corresponded to stimulation of urea cycle and high free Arg pool in seedlings roots. After two days of the culture Put and Spd stimulated Arg dependent NO formation, inhibition of which was observed after Spm application. Put or Spd application as well as NO short-term pretreatment of apple embryos influenced level of ubiquitin-conjugated proteins. Higher abundance of such modified proteins correlated well to the declined content of nitrated proteins, suggesting their important role in regulation of embryo germination. NO led to stimulation of embryos germination by increasing level of free PAs (mostly Put). While transcriptomic approach showed down regulation of Spm synthesis and up-regulation of Spm degradation by NO, confirming negative role of Spm over-accumulation in embryo dormancy removal. Our data clearly indicate positive relationship of NO-Put/Spd acting as dormancy removing factors.


Asunto(s)
Germinación/fisiología , Malus/fisiología , Óxido Nítrico/metabolismo , Latencia en las Plantas/fisiología , Poliaminas/metabolismo , Semillas/fisiología , Western Blotting , Cromatografía Líquida de Alta Presión , Expresión Génica , Genes de Plantas/genética , Malus/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/crecimiento & desarrollo
3.
Nitric Oxide ; 68: 56-67, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27810375

RESUMEN

A non-protein amino acid (NPAA) - meta-Tyrosine (m-Tyr), is a harmful compound produced by fescue roots. Young (3-4 days old) tomato (Solanum lycopersicum L.) seedlings were supplemented for 24-72 h with m-Tyr (50 or 250 µM) inhibiting root growth by 50 or 100%, without lethal effect. Fluorescence of DAF-FM and APF derivatives was determined to show reactive nitrogen species (RNS) localization and level in roots of tomato plants. m-Tyr-induced restriction of root elongation growth was related to formation of nitrated proteins described as content of 3-nitrotyrosine. Supplementation with m-Tyr enhanced superoxide radicals generation in extracts of tomato roots and stimulated protein nitration. It correlated well to increase of fluorescence of DAF-FM derivatives, and transiently stimulated fluorescence of APF derivatives corresponding respectively to NO and ONOO- formation. Alterations in RNS formation induced by m-Tyr were linked to metabolism of nitrosoglutathione (GSNO). Activity of nitrosoglutatione reductase (GSNOR), catalyzing degradation of GSNO was enhanced by long term plant supplementation with m-Tyr, similarly as protein abundance, while transcripts level were only slightly altered by tested NPAA. We conclude, that although in animal cells m-Tyr is considered as a marker of oxidative stress, its secondary mode of action in tomato plants involves perturbation in RNS formation, alteration in GSNO metabolism and modification of protein nitration level.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Especies de Nitrógeno Reactivo/metabolismo , Solanum lycopersicum/efectos de los fármacos , Tirosina/farmacología , Solanum lycopersicum/enzimología , Microscopía Confocal , Óxido Nítrico/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Tirosina/química
4.
Planta ; 244(4): 877-91, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27299743

RESUMEN

MAIN CONCLUSION: NO donors and Arg remove dormancy of apple embryos and stimulate germination. Compounds lowering NO level (cPTIO, L -NAME, CAN) strengthen dormancy. Embryo transition from dormancy state to germination is linked to increased nitric oxide synthase (NOS)-like activity. Germination of embryos is associated with declined level of biotin containing proteins and nitrated proteins in soluble protein fraction of root axis. Pattern of nitrated proteins suggest that storage proteins are putative targets of nitration. Nitric oxide (NO) acts as a key regulatory factor in removal of seed dormancy and is a signal necessary for seed transition from dormant state into germination. Modulation of NO concentration in apple (Malus domestica Borkh.) embryos by NO fumigation, treatment with NO donor (S-nitroso-N-acetyl-D,L-penicillamine, SNAP), application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), N ω-nitro-L-arginine methyl ester (L-NAME), canavanine (CAN) or arginine (Arg) allowed us to investigate the NO impact on seed dormancy status. Arg analogs and NO scavenger strengthened embryo dormancy by lowering reactive nitrogen species level in embryonic axes. This effect was accompanied by strong inhibition of NOS-like activity, without significant influence on tissue NO2 (-) concentration. Germination sensu stricto of apple embryos initiated by dormancy breakage via short term NO treatment or Arg supplementation were linked to a reduced level of biotinylated proteins in root axis. Decrease of total soluble nitrated proteins was observed at the termination of germination sensu stricto. Also modulation of NO tissue status leads to modification in nitrated protein pattern. Among protein bands that correspond to molecular mass of approximately 95 kDa, storage proteins (legumin A-like and seed biotin-containing protein) were identified, and can be considered as good markers for seed dormancy status. Moreover, pattern of nitrated proteins suggest that biotin containing proteins are also targets of nitration.


Asunto(s)
Malus/metabolismo , Óxido Nítrico/metabolismo , Latencia en las Plantas , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Arginina/metabolismo , Benzoatos/farmacología , Biotinilación , Western Blotting , Inhibidores Enzimáticos/farmacología , Germinación/efectos de los fármacos , Imidazoles/farmacología , Malus/embriología , NG-Nitroarginina Metil Éster/farmacología , Nitratos/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacología , Semillas/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo
5.
Planta ; 242(5): 1221-36, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26186967

RESUMEN

MAIN CONCLUSION: NO accelerates transition of germinated embryos from heterotrophy to autotrophy by stimulation of chloroplasts maturation. NO-mediated autotrophy of apple seedlings correlates to increased content of RuBisCO small subunit and improvement of parameters of chlorophyll a fluorescence. Nitric oxide (NO) acts as signaling molecule involved in regulation of various physiological processes in plants, although its involvement in cotyledons greening is poorly recognized. To identify the importance of NO signal for plant growth and development we investigated the effects of short-term application of NO at various developmental stages of seedlings of apple (Malus domestica Borkh.) on cotyledons' chlorophyll a to b ratio, chlorophyll a fluorescence, photosynthetic activity, carbohydrates and RuBisCO both subunits content. NO-dependent biochemical alterations were linked to cytological observation of developing plastids in cotyledons of apple plants. Abnormal plantlets developing from dormant apple embryos are characterized by anatomical malformations of cotyledons. Short-term pre-treatment with NO of isolated embryos or seedlings with developmental anomalies resulted in formation of plants with cotyledons of equal size and chlorophyll content; these responses were blocked by NO scavenger. NO independently of time point of application accelerated embryos transition from heterotrophy to autotrophy by stimulation of photosynthetic activity, improvement of parameters of chlorophyll a fluorescence (F v/F m, F v/F 0) and increased content of RuBisCO small subunit. Further analysis showed that NO application modified glucose and hydrogen peroxide concentration in cotyledons. Beneficial effect of NO on development of seedlings without any abnormalities was manifested at ultrastructural level by decline in amount of proplastids and induction of formation and maturation of chloroplasts. Our data suggest that progress of autotrophy of young seedlings is governed by NO acting as stimulator of chloroplast-to-nucleus signaling.


Asunto(s)
Cotiledón/metabolismo , Malus/metabolismo , Óxido Nítrico/metabolismo , Cotiledón/efectos de los fármacos , Malus/efectos de los fármacos , Óxido Nítrico/farmacología , Fotosíntesis/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Semillas/efectos de los fármacos , Semillas/metabolismo
6.
Plants (Basel) ; 12(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36840103

RESUMEN

The digestive fluid of pitcher plants is a rich source of enzymes and secondary metabolites, but its impact on higher plant growth and development remains unknown. The aim of the study was to determine the phytotoxicity of the digestive fluid of the pitcher plant (Nepenthes x ventrata) on the germination of tomato (Solanum lycopersicum L.) seeds, elongation growth and cell viability of roots of tomato seedlings. The digestive fluid was collected from pitchers before feeding and four days after feeding; the pH and electrical conductivity of the fluid were determined. Undiluted and 50% fluids were used in the study. An inhibition of germination of tomato seeds, by around 30% and 55%, was respectively observed in 50% and 100% digestive fluids collected before and after feeding. Digestive fluid did not affect the root growth of tomato seedlings; a slight (6%) inhibition was only observed after the application of 100% digestive fluid from an unfed trap. The roots of the tomato seedlings treated with undiluted fluid were characterized by reduced cell viability. Reactive oxygen species (H2O2 and O2•-) were mainly localized in the root apex regardless of the used phytotoxic cocktail, and did not differ in comparison to control plants.

7.
Biology (Basel) ; 12(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37887066

RESUMEN

Carnivorous plants attract animals, trap and kill them, and absorb nutrients from the digested bodies. This unusual (for autotrophs) type of nutrient acquisition evolved through the conversion of photosynthetically active leaves into specialised organs commonly called traps. The genus Nepenthes (pitcher plants) consists of approximately 169 species belonging to the group of carnivorous plants. Pitcher plants are characterised by specialised passive traps filled with a digestive fluid. The digestion that occurs inside the traps of carnivorous plants depends on the activities of many enzymes. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) also participate in the digestive process, but their action is poorly recognised. ROS and RNS, named together as RONS, exhibit concentration-dependent bimodal functions (toxic or signalling). They act as antimicrobial agents, participate in protein modification, and are components of signal transduction cascades. In the human stomach, ROS are considered as the cause of different diseases. RNS have multifaceted functions in the gastrointestinal tract, with both positive and negative impacts on digestion. This review describes the documented and potential impacts of RONS on the digestion in pitcher plant traps, which may be considered as an external stomach.

8.
Plants (Basel) ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36501343

RESUMEN

The carnivorous pitcher plant, Nepenthes × ventrata (Hort. ex Fleming = N. ventricosa Blanco × N. alata Blanco), produces passive traps containing digestive fluid. Although reactive oxygen species (ROS) in the fluid were detected in some pitcher plants, the participation of reactive nitrogen species (RNS) in the digestion process has not yet been examined. The aim of this work was to investigate the production of superoxide anion (O2•-), nitric oxide (NO) and peroxynitrite (ONOO-) levels in the digestive fluid of traps throughout organ development. We revealed the ROS and RNS occurrence in the digestive fluid, linked to the ROS-scavenging capacity and total phenolics content. In digestive fluid from the fed traps, NO emission was higher than in the fluid from the developed unfed pitcher. The concentration of nitrite (NO2-) decreased in the fluid from the fed traps in comparison to the unfed ones, pointing at NO2- as the key source of NO. The enhanced emission of NO was associated with lowered content of ONOO- in the fluid, probably due to lower production of O2•-. At the same time, despite a decline in total phenolics, the maximum ROS scavenging capacity was detected. In addition, ROS and RNS were noted even in closed traps, suggesting their involvement not only in digestion per se but also their action as signaling agents in trap ontogeny.

9.
Front Plant Sci ; 13: 929245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110361

RESUMEN

Short-term (3 h) treatment of embryos isolated from accelerated aged apple seeds (Malus domestica Borkh.) with nitric oxide (NO) partially reduced the effects of aging. The study aimed to investigate the impact of the short-term NO treatment of embryos isolated from apple seeds subjected to accelerated aging on the expression of genes potentially linked to the regulation of seed aging. Apple seeds were artificially aged for 7, 14, or 21 days. Then, the embryos were isolated from the seeds, treated with NO, and cultured for 48 h. Progression of seed aging was associated with the decreased transcript levels of most of the analyzed genes (Lea1, Lea2a, Lea4, Hsp70b, Hsp20a, Hsp20b, ClpB1, ClpB4, Cpn60a, Cpn60b, Raptor, and Saur). The role of NO in the mitigation of seed aging depended on the duration of the aging. After 7 and 14 days of seed aging, a decreased expression of genes potentially associated with the promotion of aging (Tor, Raptor, Saur) was noted. NO-dependent regulation of seed aging was associated with the stimulation of the expression of genes encoding chaperones and proteins involved in the repair of damaged proteins. After NO application, the greatest upregulation of ClpB, Pimt was noted in the embryos isolated from seeds subjected to 7-day long accelerated aging, Hsp70b, Hsp70c, and Cpn in the embryos of seeds aged for 14 days, and Lea2a in the embryos of seeds after 21 days of aging. We also demonstrated the increased meta-tyrosine concentration depending or in respect the progression of artificial aging, and the NO-induced increased phenylalanine content in seeds artificially aged for 21 days. In the NO-treated embryos of seeds aged for 7 and 21 days, the level of tyrosine was almost doubled compared to the aged tissue. Our data confirmed the usage of meta-tyrosine as a marker of seed aging and indicated that the increased meta-tyrosine/tyrosine ratio could be related to the loss of seed viability.

10.
Antioxidants (Basel) ; 10(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34829519

RESUMEN

The allelopathic interaction between plants is one of the elements that influences plant communities. It has been commonly studied by applying tissue extracts onto the acceptors or by treating them with isolated allelotoxins. Despite descriptive observations useful for agricultural practice, data describing the molecular mode of action of allelotoxins cannot be found. Due to the development of -omic techniques, we have an opportunity to investigate specific reactive oxygen species (ROS)-dependent changes in proteome or transcriptome that are induced by allelochemicals. The aim of our review is to summarize data on the ROS-induced modification in acceptor plants in response to allelopathic plants or isolated allelochemicals. We present the idea of how ROS are involved in the hormesis and plant autotoxicity phenomena. As an example of an -omic approach in studies of the mode of action of allelopatic compounds, we describe the influence of meta-tyrosine, an allelochemical exudated from roots of fescues, on nitration-one of nitro-oxidative posttranslational protein modification in the roots of tomato plants. We conclude that ROS overproduction and an induction of oxidative stress are general plants' responses to various allelochemicals, thus modification in ROS metabolisms is regarded as an indirect mode of action of allelochemicals.

11.
Antioxidants (Basel) ; 11(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35052574

RESUMEN

Seed ageing is associated with a high concentration of reactive oxygen species (ROS). Apple (Malus domestica Borkh.) seeds belong to the orthodox type. Due to a deep dormancy, they may be stored in dry condition at 5 °C for a long time, without viability loss. In the laboratory, artificial ageing of apple seeds is performed by imbibition in wet sand at warm temperature (33 °C). The aim of the work was to study nitric oxide (NO) as a seed vigour preservation agent. Embryos isolated from apple seeds subjected to accelerated ageing for 7, 14, 21 or 40 days were fumigated with NO. Embryo quality was estimated by TTC and MDA tests. ROS level was confirmed by NBT staining. We analysed the alteration in transcript levels of CAT, SOD and POX. NO fumigation of embryos of seeds aged for 21 days stimulated germination and increased ROS level which correlated to the elevated expression of RBOH. The increased total antioxidant capacity after NO fumigation was accompanied by the increased transcript levels of genes encoding enzymatic antioxidants, that could protect against ROS overaccumulation. Moreover, post-aged NO application diminished the nitro-oxidative modification of RNA, proving NO action as a remedy in oxidative remodelling after seeds ageing.

12.
Plants (Basel) ; 10(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34961269

RESUMEN

L-Tyrosine (Tyr) is one of the twenty proteinogenic amino acids and also acts as a precursor for secondary metabolites. Tyr is prone to modifications, especially under conditions of cellular redox imbalance. The oxidation of Tyr precursor phenylalanine leads to the formation of Tyr non-proteinogenic isomers, including meta-Tyr (m-Tyr), a marker of oxidative stress. The aim of this review is to summarize the current knowledge on m-Tyr toxicity. The direct m-Tyr mode of action is linked to its incorporation into proteins, resulting in their improper conformation. Furthermore, m-Tyr produced by some plants as an allelochemical impacts the growth and development of neighboring organisms. In plants, the direct harmful effect of m-Tyr is due to its modification of the proteins structure, whereas its indirect action is linked to the disruption of reactive oxygen and nitrogen species metabolism. In humans, the elevated concentration of m-Tyr is characteristic of various diseases and ageing. Indeed, m-Tyr is believed to play an important role in cancer physiology. Thus, since, in animal cells, m-Tyr is formed directly in response to oxidative stress, whereas, in plants, m-Tyr is also synthesized enzymatically and serves as a chemical weapon in plant-plant competition, the general concept of m-Tyr role in living organisms should be specified.

13.
Planta ; 232(6): 1397-407, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20830596

RESUMEN

The connection between classical phytohormone-ethylene and two signaling molecules, nitric oxide (NO) and hydrogen cyanide (HCN), was investigated in dormancy removal and germination "sensu stricto" of apple (Malus domestica Borkh.) embryos. Deep dormancy of apple embryos was removed by short-term (3-6 h) pre-treatment with NO or HCN. NO- or HCN-mediated stimulation of germination was associated with enhanced emission of ethylene by the embryos, coupled with transient increase in ROS concentration in embryos. Ethylene vapors stimulated germination of dormant apple embryos and eliminated morphological anomalies characteristic for young seedlings developed from dormant embryos. Inhibitors of ethylene receptors completely impeded beneficial effect of NO and HCN on embryo germination. NO- and HCN-induced ethylene emission by apple embryo was only slightly reduced by inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity during first 4 days of germination. Short-term pre-treatment of the embryos with NO and HCN modified activity of both key enzymes of ethylene biosynthetic pathway: ACC synthase and ACC oxidase. Activity of ACC synthase declined during first 4 days of germination, while activity of ACC oxidase increased markedly at that time. Additional experiments point to non-enzymatic conversion of ACC to ethylene in the presence of ROS (H(2)O(2)). The results indicate that NO and HCN may alleviate dormancy of apple embryos "via" transient accumulation of ROS, leading to enhanced ethylene emission which is required to terminate germination "sensu stricto". Therefore, ethylene seems to be a trigger factor in control of apple embryo dormancy removal and germination.


Asunto(s)
Cianuros/metabolismo , Etilenos/biosíntesis , Malus/embriología , Óxido Nítrico/metabolismo , Semillas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo
14.
Planta ; 232(4): 999-1005, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20628761

RESUMEN

Deep dormancy of apple (Malus domestica Borkh.) seeds is terminated by a 3-month-long cold stratification. It is expressed by rapid germination of seeds and undisturbed growth of seedlings. However, stimulation of germination of isolated apple embryos is also observed after applying inhibitors of cytochrome c oxidase: nitric oxide (NO) or hydrogen cyanide (HCN) during the first 3-6 h of imbibition of dormant embryos. The aim of this work was to compare the effect of yet another toxic gaseous molecule carbon monoxide (CO) with the effects of HCN and NO on germination of apple embryos and growth and development of young seedlings. We demonstrated that stimulation of germination after short-term pre-treatment with HCN, NO or CO was accompanied by enhanced NO emission from the embryo axes during their elongation. Moreover, similarly high NO production from non-dormant embryos, after cold stratification, was detected. Therefore, we propose that NO may act as signaling molecule in apple embryo dormancy break.


Asunto(s)
Germinación/efectos de los fármacos , Malus/metabolismo , Malus/fisiología , Óxido Nítrico/metabolismo , Semillas/metabolismo , Semillas/fisiología , Cianuro de Hidrógeno/farmacología , Malus/efectos de los fármacos , Óxido Nítrico/farmacología , Semillas/efectos de los fármacos , Agua/farmacología
15.
Plants (Basel) ; 9(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213049

RESUMEN

Canavanine (CAN) is a nonproteinogenic amino acid, and its toxicity comes from its utilization instead of arginine in many cellular processes. As presented in previous experiments, supplementation of tomato (Solanum lycopersicum L.) with CAN led to decreased nitric oxide (NO) level and induced secondary oxidative stress. CAN improved total antioxidant capacity in roots, with parallel inhibition of enzymatic antioxidants. The aim of this work was to determine how CAN-dependent limitation of NO emission and reactive oxygen species overproduction impact content, localization, and metabolism of phenolic compounds (PCs) in tomato roots. Tomato seedlings were fed with CAN (10 and 50 µM) for 24 or 72 h. Inhibition of root growth due to CAN supplementation correlated with increased concentration of total PCs; CAN (50 µM) led to the homogeneous accumulation of PCs all over the roots. CAN increased also flavonoids content in root tips. The activity of polyphenol oxidases and phenylalanine ammonia-lyase increased only after prolonged treatment with 50 µM CAN, while expressions of genes encoding these enzymes were modified variously, irrespectively of CAN dosage and duration of the culture. PCs act as the important elements of the cellular antioxidant system under oxidative stress induced by CAN.

16.
Front Plant Sci ; 11: 1011, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733516

RESUMEN

Reactive nitrogen species (RNS) are universal compounds that are constantly present in plant cells. RNS function depends on their actual level (the "nitrosative door" concept), duration of plant exposure to RNS and the context of the exposure. RNS are involved in the nitration of nucleic acids and fatty acids, posttranslational protein modifications (nitration and S-nitrosylation), and modulation of reactive oxygen species metabolism. RNS are regulatory molecules of various physiological processes in plants, including seed formation, maturation, dormancy and germination. The free radical theory of aging, well documented for animals, indicated that RNS participate in the regulation of the life span. Some data point to RNS contribution in preservation of seed vigor and/or regulation of seed longevity. Seed aging is a problem for biologists and agriculture, which could be solved by application of RNS, as a factor that may potentially expand seed vitality resulting in increased germination rate. The review is focused on RNS, particularly nitric oxide contribution to regulation of seed aging.

17.
Plant Physiol Biochem ; 138: 112-120, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30861401

RESUMEN

S-nitrosoglutathione (GSNO), an integral metabolite of nitric oxide (NO) biochemistry is reduced by S-nitrosoglutathione reductase (GSNOR) (EC 1.2.1.46), leading to formation of glutathione in oxidised form (GSSG), further reduced to GSH by glutathione reductase (GR). GSH as a vital antioxidant has a significant role for seed quality and during seed germination. Since early 50th of 20th century it is known that deep dormancy of apple (Malus domestica Borkh.) embryos is removed by 90 days of cold stratification. Our previous studies demonstrated that similar effect is observed after short term (3 h) exposition of isolated embryos to nitric oxide (NO) donors. The aim of our work was to verify the differences in GSNO level and GSNOR activity in embryonic axes isolated after initiation of germination (24 h of imbibition) from dormant embryos (the control) and from 90 days cold stratified seeds. Our data indicated that seed dormancy breakage is accompanied by increased GSNO content and the decrease of GSNOR activity. The abundance of GSNOR protein is similar in both non-dormant and dormant embryonic axes during first hours of water uptake, while GSNOR transcript level increases in non-dormant tissue. Furthermore, in non-dormant embryonic axes we noticed a higher glutathione pool, mostly in its reduced form. These results are linked to the increase of cytosolic GR transcript level and increased enzyme activity in embryonic axes isolated from stratified seeds.


Asunto(s)
Frío , Respuesta al Choque por Frío , Malus/metabolismo , Latencia en las Plantas , S-Nitrosoglutatión/metabolismo , Semillas/metabolismo , Donantes de Óxido Nítrico/farmacología
18.
Front Plant Sci ; 10: 1077, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616445

RESUMEN

Canavanine (CAN) is a nonproteinogenic amino acid synthesized in legumes. In mammalians, as arginine analogue, it is an inhibitor of nitric oxide synthase (NOS) activity. The aim of this study was to investigate the impact of CAN-induced nitric oxide level limitation on the antioxidant system and S-nitrosoglutathione (GSNO) metabolism in roots of tomato seedlings. Treatment with CAN (10 or 50 µM) for 24-72 h led to restriction in root growth. Arginine-dependent NOS-like activity was almost completely inhibited, demonstrating direct effect of CAN action. CAN increased total antioxidant capacity and the level of sulphydryl groups. Catalase (CAT) and superoxide dismutase (SOD) activity decreased in CAN exposed roots. CAN supplementation resulted in the decrease of transcript levels of genes coding CAT (with the exception of CAT1). Genes coding SOD (except MnSOD and CuSOD) were upregulated by CAN short treatment; prolonged exposition to 50-µM CAN resulted in downregulation of FeSOD, CuSOD, and SODP-2. Activity of glutathione reductase dropped down after short-term (10-µM CAN) supplementation, while glutathione peroxidase activity was not affected. Transcript levels of glutathione reductase genes declined in response to CAN. Genes coding glutathione peroxidase were upregulated by 50-µM CAN, while 10-µM CAN downregulated GSHPx1. Inhibition of NOS-like activity by CAN resulted in lower GSNO accumulation in root tips. Activity of GSNO reductase was decreased by short-term supplementation with CAN. In contrast, GSNO reductase protein abundance was higher, while transcript levels were slightly altered in roots exposed to CAN. This is the first report on identification of differentially nitrated proteins in response to supplementation with nonproteinogenic amino acid. Among nitrated proteins differentially modified by CAN, seed storage proteins (after short-term CAN treatment) and components of the cellular redox system (after prolonged CAN supplementation) were identified. The findings demonstrate that due to inhibition of NOS-like activity, CAN leads to modification in antioxidant system. Limitation in GSNO level is due to lower nitric oxide formation, while GSNO catabolism is less affected. We demonstrated that monodehydroascorbate reductase, activity of which is inhibited in roots of CAN-treated plants, is the protein preferentially modified by tyrosine nitration.

19.
Plant Physiol Biochem ; 123: 369-377, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29304482

RESUMEN

meta-Tyrosine (m-Tyr) is a non-protein amino acid produced in both plants and animals. Primary mode of action of this phenylalanine analog is its incorporation into protein structure leading to formation of aberrant molecules. An increased level of m-Tyr in animal cells is detected under oxidative stress and during age-related processes characterized by overproduction of reactive oxygen species (ROS). The aim of this study was to link m-Tyr physiological action to disturbances in ROS metabolism in tomato (Solanum lycopersicum L.) seedlings roots. Treatment of tomato seedlings with m-Tyr (50 or 250 µM) for 24-72 h led to inhibition of root growth without a lethal effect. Toxicity of m-Tyr after 72 h was connected with an increase in hydrogen peroxide concentration in roots and ROS leakage into the surrounding medium. On the contrary, membrane permeability and lipid peroxidation in roots were the same as for the control. This was accompanied by a decrease in total antioxidant activity and an increased accumulation of phenolic compounds. Catalase (CAT) activity declined in roots exposed to 50 µM m-Tyr after 24 h while after 72 h activity of this enzyme was inhibited in both treated and non-treated samples. Activities of different superoxide dismutase (SOD) isoforms were similar in m-Tyr stressed roots and in the control. Prolonged culture resulted in decrease of transcript level of genes coding CAT and SOD with the exception of FeSOD. Moreover, m-Tyr increased the level of protein carbonyl groups indicating induction of oxidative stress as a non-direct mode of action.


Asunto(s)
Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Solanum lycopersicum/metabolismo , Tirosina/metabolismo , Catalasa/metabolismo , Peroxidación de Lípido/fisiología , Proteínas de Plantas/metabolismo
20.
Plant Physiol Biochem ; 103: 84-95, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26986929

RESUMEN

Canavanine (CAN) is non-proteinogenic aminoacid and a structural analog of arginine (Arg). Naturally, CAN occurs in legumes e.g. jack bean and is considered as a strong allelochemical. As a selective inhibitor of inducible nitric oxide synthase in mammalians, it could act as a modifier of nitric oxide (NO) concentration in plants. Modifications in the content of endogenous reactive nitrogen species (RNS) and reactive oxygen species (ROS) influence root structure and architecture, being also under hormonal control. The aim of the work was to investigate regulation of root growth in tomato (Solanum lycopersicum L. cv. Malinowy Ozarowski) seedling by application of CAN at concentration (10 and 50 µM) leading to 50% or 100% restriction of root elongation. CAN at higher concentration led to slight DNA fragmentation, increased total RNA and protein level. Decline in total respiration rate after CAN supplementation was not associated with enhanced membrane permeability. Malformations in root morphology (shorter and thicker roots, limited number of lateral roots) were accompanied by modification in NO and ONOO(-) localization; determined mainly in peridermal cells and some border cells. Although, CAN resulted in low RNS production, addition of exogenous NO by usage of NO donors did not reverse its negative effect, nor recovery effect was detected after roots imbibition in Arg. To build up a comprehensive view on mode of action of CAN as root growth inhibitor, it was shown an elevated level of auxin. To summarize, we demonstrated several secondary mode of action of CAN, indicating its toxicity in plants linked to restriction in RNS formation accompanied by simultaneous overaccumulation of ROS.


Asunto(s)
Canavanina/farmacología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Solanum lycopersicum/fisiología , Supervivencia Celular/efectos de los fármacos , Germinación/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/farmacología , Oxígeno/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Plantones/efectos de los fármacos , Plantones/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda