RESUMEN
BACKGROUND: Electronic patient portals provide a new method for sharing personal medical information with individual patients. OBJECTIVE: Our aim was to review utilization patterns of the largest online patient portal in Canada's largest city. METHODS: We conducted a 4-year time-trend analysis of aggregated anonymous utilization data of the MyChart patient portal at Sunnybrook Health Sciences Centre in Ontario, Canada, from January 1, 2012, through December 31, 2015. Prespecified analyses examined trends related to day (weekend vs weekday), season (July vs January), year (2012 vs 2015), and an extreme adverse weather event (ice storm of December 20-26, 2013). Primary endpoints included three measures of patient portal activity: registrations, logins, and pageviews. RESULTS: We identified 32,325 patients who registered for a MyChart account during the study interval. Time-trend analysis showed no sign of attenuating registrations over time. Logins were frequent, averaged 734 total per day, and showed an increasing trend over time. Pageviews mirrored logins, averaged about 3029 total per day, and equated to about 5 pageviews during the average login. The most popular pageviews were clinical notes, followed by laboratory results and medical imaging reports. All measures of patient activity were lower on weekends compared to weekdays (P<.001) yet showed no significant changes related to seasons or extreme weather. No major security breach, malware attack, or software failure occurred during the study. CONCLUSIONS: Online patient portals can provide a popular and reliable system for distributing personal medical information to active patients and may merit consideration for hospitals.
Asunto(s)
Registros Electrónicos de Salud/normas , Participación del Paciente/métodos , Portales del Paciente/normas , Femenino , Humanos , MasculinoRESUMEN
The endoplasmic reticulum (ER) is an organelle important for protein synthesis and folding, lipid synthesis and Ca(2+) homoeostasis. Consequently, ER stress or dysfunction affects numerous cellular processes and has been implicated as a contributing factor in several pathophysiological conditions. Tunicamycin induces ER stress in various cell types in vitro as well as in vivo. In mice, a hallmark of tunicamycin administration is the development of fatty livers within 24-48 hrs accompanied by hepatic ER stress. We hypothesized that tunicamycin would induce ER stress in adipose tissue that would lead to increased lipolysis and subsequently to fatty infiltration of the liver and hepatomegaly. Our results show that intraperitoneal administration of tunicamycin rapidly induced an ER stress response in adipose tissue that correlated with increased circulating free fatty acids (FFAs) and glycerol along with decreased adipose tissue mass and lipid droplet size. Furthermore, we found that in addition to fatty infiltration of the liver as well as hepatomegaly, lipid accumulation was also present in the heart, skeletal muscle and kidney. To corroborate our findings to a clinical setting, we examined adipose tissue from burned patients where increases in lipolysis and the development of fatty livers have been well documented. We found that burned patients displayed significant ER stress within adipose tissue and that ER stress augments lipolysis in cultured human adipocytes. Our results indicate a possible role for ER stress induced lipolysis in adipose tissue as an underlying mechanism contributing to increases in circulating FFAs and fatty infiltration into other organs.
Asunto(s)
Tejido Adiposo/patología , Estrés del Retículo Endoplásmico , Lipólisis , Tejido Adiposo/efectos de los fármacos , Animales , Quemaduras/patología , Quemaduras/cirugía , Separación Celular , Células Cultivadas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Grasos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Lipólisis/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Especificidad de Órganos/efectos de los fármacos , Tunicamicina/farmacologíaRESUMEN
OBJECTIVES: Cognitive-behavioural models of eating disorders state that body checking arises in response to negative emotions in order to reduce the aversive emotional state and is therefore negatively reinforced. This study empirically tests this assumption. METHODS: For a seven-day period, women with eating disorders (n = 26) and healthy controls (n = 29) were provided with a handheld computer for assessing occurring body checking strategies as well as negative and positive emotions. Serving as control condition, randomized computer-emitted acoustic signals prompted reports on body checking and emotions. RESULTS: There was no difference in the intensity of negative emotions before body checking and in control situations across groups. However, from pre- to post-body checking, an increase in negative emotions was found. This effect was more pronounced in women with eating disorders compared with healthy controls. DISCUSSION: Results are contradictory to the assumptions of the cognitive-behavioural model, as body checking does not seem to reduce negative emotions.
Asunto(s)
Imagen Corporal , Emociones , Trastornos de Alimentación y de la Ingestión de Alimentos/psicología , Autoimagen , Adulto , Estudios de Casos y Controles , Emociones/fisiología , Conducta Alimentaria/psicología , Femenino , Humanos , Satisfacción Personal , Adulto JovenRESUMEN
The traditional taxonomy of ca. 700 cone snails assigns all species to a single genus, Conus Linnaeus 1758. However, an increasing body of evidence suggests that some belong to a phylogenetically distinct clade that is sometimes referred to as Conasprella. Previous work (Kraus et al., 2011) showed that a short (259 bp) conserved intronic sequence (CIS) of the γ-glutamyl carboxylase gene (intron 9) can be used to delineate deep phylogenetic relationships among some groups of Conus. The work described here uses intron 9 (338 bp) to resolve problematic relationships among the conasprellans and to distinguish them from Conus proper. Synapomorphic mutations at just 39 sites can resolve several groups within Conasprella because the informative region of intron 9 is so well conserved that the phylogenetic signal is not obscured by homoplasies at conflicting sites. Intron 9 also unambiguously distinguishes Conasprella as a whole from Conus because the conserved regions that are so well conserved within each group are not alignable and clearly not homologous between them. This pattern suggests that expression of the γ-glutamyl carboxylase gene may have undergone a functionally significant change in Conus or Conasprella shortly after they diverged.
Asunto(s)
Ligasas de Carbono-Carbono/genética , Secuencia Conservada/genética , Caracol Conus/clasificación , Filogenia , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Caracol Conus/genética , Intrones , Datos de Secuencia MolecularRESUMEN
A short (259 nucleotide) conserved intronic sequence (CIS) is surprisingly informative for delineating deep phylogenetic relationships in cone snails. Conus species previously have been assigned to clades based on the evidence from mitochondrial 12S and 16S rRNA gene sequences (1129 bp). Despite their length, these genes lack the phylogenetic information necessary to resolve the relationships among the clades. Here we show that the relationships can be inferred from just 46 sites in the very short CIS sequence (a portion of "intron 9" of the γ-glutamyl carboxylase gene). This is counterintuitive because in short sequences sampling error (noise) often drowns out phylogenetic signal. The intron 9 CIS is rich in synapomorphies that define the divergence patterns among eight clades of worm- and fish-hunting Conus, and it contains almost no homoplasy. Parsimony, maximum likelihood and Bayesian analyses of the combined sequences (mt rRNA+CIS) confirm most of the relationships among 23 Conus sequences. This phylogeny implies that fish-hunting behavior evolved at least twice during the history of Conus-once among New World species and independently in the Indo-Pacific clades.
Asunto(s)
Caracol Conus/genética , Intrones , Filogenia , Animales , Teorema de Bayes , Evolución Biológica , Secuencia Conservada , Caracol Conus/clasificación , ADN Mitocondrial/genética , Funciones de Verosimilitud , ARN Ribosómico/genética , ARN Ribosómico 16S/genéticaRESUMEN
BACKGROUND: Fluid resuscitation is a crucial therapy for sepsis, and the use of balanced fluids and/or isotonic albumin may improve patient survival. We have previously demonstrated that resuscitation with normal saline results in increased hepatic leukocyte recruitment in a murine model of sepsis. Given that clinical formulations of albumin are in saline, our objectives were to develop a novel balanced electrolyte solution specifically for sepsis and to determine if supplementing this solution with albumin would improve the inflammatory response in sepsis. METHODS: We developed two novel buffered electrolyte solutions that contain different concentrations of acetate and gluconate, named Seplyte L and Seplyte H, and administered these solutions with or without 5% albumin. Normal saline with or without albumin and Ringer's lactate served as controls. Sepsis was induced by cecal ligation and puncture (CLP), and the liver microvasculature was imaged in vivo at 6 h after CLP to quantify leukocyte recruitment. Hepatic cytokine expression and plasma cell-free DNA (cfDNA) concentrations were also measured. RESULTS: Septic mice receiving either Seplyte fluid showed significant reductions in hepatic post-sinusoidal leukocyte rolling and adhesion compared to normal saline. Hepatic cytokine concentrations varied in response to different concentrations of acetate and gluconate in the novel resuscitation fluids but were unaffected by albumin. All Seplyte fluids significantly increased hepatic TNF-α levels at 6 h compared to control fluids. However, Seplyte H exhibited a similar cytokine profile to the control fluids for all other cytokines, whereas mice given Seplyte L had significantly elevated IL-6, IL-10, KC (CXCL1), and MCP-1 (CCL2). Plasma cfDNA was generally increased during sepsis, but resuscitation fluid composition did not significantly affect cfDNA concentrations. CONCLUSIONS: Electrolyte concentrations and buffer constituents of resuscitation fluids can modulate hepatic cytokine production and leukocyte recruitment in septic mice, while the effects of albumin are modest during early sepsis. Therefore, crystalloid fluid choice should be an important consideration for resuscitation in sepsis, and the effects of fluid composition on inflammation in other organ systems should be studied to better understand the physiological impact of this vital sepsis therapy.