Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 22(19): 3844-57, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23716570

RESUMEN

In humans, the concerted action of at least 13 different peroxisomal PEX proteins is needed for proper peroxisome biogenesis. Mutations in any of these PEX genes can lead to lethal neurometabolic disorders of the Zellweger syndrome spectrum (ZSS). Previously, we identified the W313G mutation located within the SH3 domain of the peroxisomal protein, PEX13. As this tryptophan residue is highly conserved in almost all known SH3 proteins, we investigated the pathogenic mechanism of the W313G mutation and its role in PEX13 interactions and functions in peroxisome biogenesis. Here, we report for the first time that human PEX13 interacts with itself in peroxisomes in living cells. We demonstrate that the import of PTS1 (peroxisomal targeting signal 1) proteins is specifically disrupted when homooligomerization of PEX13 is interrupted. Live cell FRET microscopy in living cells as well as co-immunoprecipitation experiments reveal that the highly conserved W313 residue is important for self-association of PEX13 but is not required for interaction with PEX14, a well-established interaction partner at the peroxisomal membrane. Experiments with truncated constructs indicate that although the W313G mutation resides in the C-terminal SH3 domain, the N-terminal half is necessary for peroxisomal localization, which in turn appears to be crucial for homooligomerization. Furthermore, rescue of homooligomerization in the W313G mutant cells through complementation with truncation constructs restores import of peroxisomal matrix proteins. Taken together, the thorough analyses of a ZSS patient mutation unraveled the general cell biological function of PEX13 and its mechanism in the import of peroxisomal matrix PTS1 proteins.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Prueba de Complementación Genética , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación Missense , Receptor de la Señal 2 de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/genética , Unión Proteica , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Dominios Homologos src
2.
Hum Mutat ; 27(11): 1157, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17041890

RESUMEN

Mutations in each of the 13 identified human PEX genes are known to cause a peroxisomal biogenesis defect (PBD). Affected patients can be divided into two broad clinical spectra: the Zellweger spectrum, which accounts for about 80% of PBD patients, and the rhizomelia chondrodysplasia punctata (RCDP) spectrum. The clinical continuum of Zellweger spectrum patients extends from Zellweger syndrome (ZS) as the prototype and the most severe entity of this group to neonatal adrenoleukodystrophy (NALD) as an intermediate form and infantile Refsum (IRD) disease as the mildest variant. Characteristic features of ZS patients are dysmorphic features, severe neurological impairment, liver dysfunction, and eye and skeletal abnormalities. Similar but less severe clinical signs are seen in patients with NALD and IRD. In this study ten clinically and/or biochemically well-characterized patients with classical ZS were investigated for defects in all known human PEX genes. We identified two novel mutations in PEX2 (official symbol, PXMP3), two novel mutations in PEX6, two novel mutations in PEX10, one novel mutation in PEX12, and one novel mutation in PEX13.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de la Membrana/genética , Mutación , Receptores Citoplasmáticos y Nucleares/genética , Síndrome de Zellweger/genética , ATPasas Asociadas con Actividades Celulares Diversas , Secuencia de Aminoácidos , Animales , Células CHO , Células Cultivadas , Cricetinae , Humanos , Datos de Secuencia Molecular , Peroxinas , Factor 2 de la Biogénesis del Peroxisoma , Homología de Secuencia de Aminoácido , Transfección
3.
Eur J Hum Genet ; 17(6): 741-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19142205

RESUMEN

Zellweger syndrome spectrum (ZSS) comprises a clinically and genetically heterogeneous disease entity, which is caused by mutations in any of the 12 different human PEX genes leading to impaired biogenesis of the peroxisome. Patients potentially suffering from ZSS are diagnosed biochemically by measuring elevated levels of very long chain fatty acids, pristanic acid and phytanic acid in plasma and serum and reduced levels of ether phospholipids in erythrocytes. Published reports on diagnostic procedures for ZSS patients are restricted either to biochemical markers or to defined mutations in a subset of PEX genes. Clarification of the primary genetic defect in an affected patient is crucial for genetic counselling, carrier testing or prenatal diagnosis. In this study, we present a rational diagnostic strategy for patients suspected of ZSS. By combining cell biology and molecular genetic methods in an appropriate sequence, we were able to detect the underlying mutation in various PEX genes within adequate time and cost. We applied this method on 90 patients who presented at our institute, Department of Pediatrics and Pediatric Neurology at Georg August University, and detected 174 mutant alleles within six different PEX genes, including two novel deletions and three new missense mutations in PEX6. Furthermore, this strategy will extend our knowledge on genotype-phenotype correlation in various PEX genes. It will contribute to a better understanding of ZSS pathogenesis, allowing the investigation of the effects of diverse mutations on the interaction between PEX proteins and peroxisomal function in vivo.


Asunto(s)
Síndrome de Zellweger/diagnóstico , Células Cultivadas , Pruebas Genéticas/economía , Pruebas Genéticas/métodos , Humanos , Mutación , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Transfección , Síndrome de Zellweger/genética , Síndrome de Zellweger/patología
4.
Dev Biol ; 296(1): 253-64, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16764850

RESUMEN

A key step in organogenesis of the Drosophila tracheal system is the integration of isolated tracheal metameres into a connected tubular network. The interaction of tracheal cells with surrounding mesodermal cells is crucial in this process. In particular, single mesodermal cells called bridge-cells are essential for the guided outgrowth of dorsal trunk branches to direct formation of the main airway, the dorsal trunk. Here, we present evidence that the two leucine-rich repeat transmembrane proteins Capricious and Tartan contribute differently to the formation of branch interconnections during tracheal development. Capricious is specifically localized on the surface of bridge-cells and facilitates the outgrowing dorsal trunk cells of adjacent metameres toward each other. We show that Capricious requires both extracellular and intracellular domains during tracheal branch outgrowth. In contrast, Tartan is expressed broadly in mesodermal cells and exerts its role in tracheal branch outgrowth through its extracellular domain. We propose that Capricious contributes to the instructive role of bridge-cells whereas Tartan provides permissive substrate for the migrating tracheal cells during the network formation.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Leucina/química , Proteínas de la Membrana/fisiología , Proteínas/fisiología , Tráquea/embriología , Secuencia de Aminoácidos , Animales , Movimiento Celular/fisiología , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/química , Drosophila melanogaster/química , Proteínas Repetidas Ricas en Leucina , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Proteínas/química
5.
Microbiology (Reading) ; 149(Pt 5): 1205-1216, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12724382

RESUMEN

Proteolysis triggered by the anaphase-promoting complex/cyclosome (APC/C) is essential for the progression through mitosis. APC/C is a highly conserved ubiquitin ligase whose activity is regulated during the cell cycle by various factors, including spindle checkpoint components and protein kinases. The cAMP-dependent protein kinase (PKA) was identified as negative regulator of APC/C in yeast and mammalian cells. In the yeast Saccharomyces cerevisiae, PKA activity is induced upon glucose addition or by activated Ras proteins. This study shows that glucose and the activated Ras2(Val19) protein synergistically inhibit APC/C function via the cAMP/PKA pathway in yeast. Remarkably, Ras2 proteins defective in the interaction with adenylate cyclase fail to influence APC/C, implying that its function is regulated exclusively by PKA, but not by alternative Ras pathways. Furthermore, it is shown that the three PKAs in yeast, Tpk1, Tpk2 and Tpk3, have redundant functions in regulating APC/C in response to glucose medium. Single or double deletions of TPK genes did not prevent inhibition of APC/C, suggesting that each of the Tpk proteins can take over this function. However, Tpk2 seems to inhibit APC/C function more efficiently than Tpk1 and Tpk3. Finally, evidence is provided that Cdc20 is involved in APC/C regulation by the cAMP/PKA pathway.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Glucosa/farmacología , Ligasas/antagonistas & inhibidores , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/fisiología , Complejos de Ubiquitina-Proteína Ligasa , Proteínas ras/farmacología , Ciclosoma-Complejo Promotor de la Anafase , Ciclo Celular , Medios de Cultivo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , Ligasas/genética , Mutación , Proteínas Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda