Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Hum Genet ; 111(2): 364-382, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272033

RESUMEN

The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiomiopatía Dilatada , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corazón , Trastornos del Neurodesarrollo/genética
2.
PLoS Genet ; 20(2): e1011168, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38412177

RESUMEN

Artificial intelligence (AI) for facial diagnostics is increasingly used in the genetics clinic to evaluate patients with potential genetic conditions. Current approaches focus on one type of AI called Deep Learning (DL). While DL- based facial diagnostic platforms have a high accuracy rate for many conditions, less is understood about how this technology assesses and classifies (categorizes) images, and how this compares to humans. To compare human and computer attention, we performed eye-tracking analyses of geneticist clinicians (n = 22) and non-clinicians (n = 22) who viewed images of people with 10 different genetic conditions, as well as images of unaffected individuals. We calculated the Intersection-over-Union (IoU) and Kullback-Leibler divergence (KL) to compare the visual attentions of the two participant groups, and then the clinician group against the saliency maps of our deep learning classifier. We found that human visual attention differs greatly from DL model's saliency results. Averaging over all the test images, IoU and KL metric for the successful (accurate) clinician visual attentions versus the saliency maps were 0.15 and 11.15, respectively. Individuals also tend to have a specific pattern of image inspection, and clinicians demonstrate different visual attention patterns than non-clinicians (IoU and KL of clinicians versus non-clinicians were 0.47 and 2.73, respectively). This study shows that humans (at different levels of expertise) and a computer vision model examine images differently. Understanding these differences can improve the design and use of AI tools, and lead to more meaningful interactions between clinicians and AI technologies.


Asunto(s)
Inteligencia Artificial , Computadores , Humanos , Simulación por Computador
3.
Bioinformatics ; 40(Supplement_1): i110-i118, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940144

RESUMEN

Artificial intelligence (AI) is increasingly used in genomics research and practice, and generative AI has garnered significant recent attention. In clinical applications of generative AI, aspects of the underlying datasets can impact results, and confounders should be studied and mitigated. One example involves the facial expressions of people with genetic conditions. Stereotypically, Williams (WS) and Angelman (AS) syndromes are associated with a "happy" demeanor, including a smiling expression. Clinical geneticists may be more likely to identify these conditions in images of smiling individuals. To study the impact of facial expression, we analyzed publicly available facial images of approximately 3500 individuals with genetic conditions. Using a deep learning (DL) image classifier, we found that WS and AS images with non-smiling expressions had significantly lower prediction probabilities for the correct syndrome labels than those with smiling expressions. This was not seen for 22q11.2 deletion and Noonan syndromes, which are not associated with a smiling expression. To further explore the effect of facial expressions, we computationally altered the facial expressions for these images. We trained HyperStyle, a GAN-inversion technique compatible with StyleGAN2, to determine the vector representations of our images. Then, following the concept of InterfaceGAN, we edited these vectors to recreate the original images in a phenotypically accurate way but with a different facial expression. Through online surveys and an eye-tracking experiment, we examined how altered facial expressions affect the performance of human experts. We overall found that facial expression is associated with diagnostic accuracy variably in different genetic conditions.


Asunto(s)
Expresión Facial , Humanos , Aprendizaje Profundo , Inteligencia Artificial , Genética Médica/métodos , Síndrome de Williams/genética
4.
Brain ; 147(7): 2471-2482, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386308

RESUMEN

Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations; however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESCs), including a knockout and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-sequencing analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.


Asunto(s)
Ratones Noqueados , Trastornos del Neurodesarrollo , Adolescente , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Ratones , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Factores de Transcripción/genética
5.
Hum Genet ; 143(1): 71-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38117302

RESUMEN

Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.


Asunto(s)
Anomalías Múltiples , Cara/anomalías , Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Adulto , Humanos , Niño , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Micrognatismo/genética , Micrognatismo/diagnóstico , Deformidades Congénitas de la Mano/genética , Cuello/anomalías , Fenotipo , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética
6.
Am J Med Genet A ; 194(9): e63641, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725242

RESUMEN

Next-generation phenotyping (NGP) can be used to compute the similarity of dysmorphic patients to known syndromic diseases. So far, the technology has been evaluated in variant prioritization and classification, providing evidence for pathogenicity if the phenotype matched with other patients with a confirmed molecular diagnosis. In a Nigerian cohort of individuals with facial dysmorphism, we used the NGP tool GestaltMatcher to screen portraits prior to genetic testing and subjected individuals with high similarity scores to exome sequencing (ES). Here, we report on two individuals with global developmental delay, pulmonary artery stenosis, and genital and limb malformations for whom GestaltMatcher yielded Cornelia de Lange syndrome (CdLS) as the top hit. ES revealed a known pathogenic nonsense variant, NM_133433.4: c.598C>T; p.(Gln200*), as well as a novel frameshift variant c.7948dup; p.(Ile2650Asnfs*11) in NIPBL. Our results suggest that NGP can be used as a screening tool and thresholds could be defined for achieving high diagnostic yields in ES. Training the artificial intelligence (AI) with additional cases of the same ethnicity might further increase the positive predictive value of GestaltMatcher.


Asunto(s)
Síndrome de Cornelia de Lange , Fenotipo , Humanos , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/patología , Masculino , Femenino , Niño , Nigeria , Preescolar , Proteínas de Ciclo Celular/genética , Secuenciación del Exoma , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Lactante
7.
NAR Genom Bioinform ; 6(1): lqae013, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38344274

RESUMEN

De novo mutations (DNMs), and among them clustered DNMs within 20 bp of each other (cDNMs) are known to be a potential cause of genetic disorders. However, identifying DNM in whole genome sequencing (WGS) data is a process that often suffers from low specificity. We propose a deep learning framework for DNM and cDNM detection in WGS data based on Google's DeepTrio software for variant calling, which considers regions of 110 bp up- and downstream from possible variants to take information from the surrounding region into account. We trained a model each for the DNM and cDNM detection tasks and tested it on data generated on the HiSeq and NovaSeq platforms. In total, the model was trained on 82 WGS trios generated on the NovaSeq and 16 on the HiSeq. For the DNM detection task, our model achieves a sensitivity of 95.7% and a precision of 89.6%. The extended model adds confidence information for cDNMs, in addition to standard variant classes and DNMs. While this causes a slight drop in DNM sensitivity (91.96%) and precision (90.5%), on HG002 cDNMs can be isolated from other variant classes in all cases (5 out of 5) with a precision of 76.9%. Since the model emits confidence probabilities for each variant class, it is possible to fine-tune cutoff thresholds to allow users to select a desired trade-off between sensitivity and specificity. These results show that DeepTrio can be retrained to identify complex mutational signatures with only little modification effort.

8.
Genes (Basel) ; 15(3)2024 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-38540429

RESUMEN

Genomic variant prioritization is crucial for identifying disease-associated genetic variations. Integrating facial and clinical feature analyses into this process enhances performance. This study demonstrates the integration of facial analysis (GestaltMatcher) and Human Phenotype Ontology analysis (CADA) within VarFish, an open-source variant analysis framework. Challenges related to non-open-source components were addressed by providing an open-source version of GestaltMatcher, facilitating on-premise facial analysis to address data privacy concerns. Performance evaluation on 163 patients recruited from a German multi-center study of rare diseases showed PEDIA's superior accuracy in variant prioritization compared to individual scores. This study highlights the importance of further benchmarking and future integration of advanced facial analysis approaches aligned with ACMG guidelines to enhance variant classification.


Asunto(s)
Enfermedades Raras , Humanos , Fenotipo , Enfermedades Raras/genética
9.
Nutrients ; 16(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38999830

RESUMEN

Insufficient dietary fiber intake can negatively affect the intestinal microbiome and, over time, may result in gut dysbiosis, thus potentially harming overall health. This randomized controlled trial aimed to improve the gut microbiome of individuals with low dietary fiber intake (<25 g/day) during a 7-week synbiotic intervention. The metabolically healthy male participants (n = 117, 32 ± 10 y, BMI 25.66 ± 3.1 kg/m2) were divided into two groups: one receiving a synbiotic supplement (Biotic Junior, MensSana AG, Forchtenberg, Germany) and the other a placebo, without altering their dietary habits or physical activity. These groups were further stratified by their dietary fiber intake into a low fiber group (LFG) and a high fiber group (HFG). Stool samples for microbiome analysis were collected before and after intervention. Statistical analysis was performed using linear mixed effects and partial least squares models. At baseline, the microbiomes of the LFG and HFG were partially separated. After seven weeks of intervention, the abundance of SCFA-producing microbes significantly increased in the LFG, which is known to improve gut health; however, this effect was less pronounced in the HFG. Beneficial effects on the gut microbiome in participants with low fiber intake may be achieved using synbiotics, demonstrating the importance of personalized synbiotics.


Asunto(s)
Fibras de la Dieta , Heces , Microbioma Gastrointestinal , Simbióticos , Humanos , Simbióticos/administración & dosificación , Masculino , Fibras de la Dieta/administración & dosificación , Adulto , Método Doble Ciego , Heces/microbiología , Adulto Joven
10.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732547

RESUMEN

Synbiotics modulate the gut microbiome and contribute to the prevention of liver diseases such as metabolic-dysfunction-associated fatty liver disease (MAFLD). This study aimed to evaluate the effect of a randomized, placebo-controlled, double-blinded seven-week intervention trial on the liver metabolism in 117 metabolically healthy male participants. Anthropometric data, blood parameters, and stool samples were analyzed using linear mixed models. After seven weeks of intervention, there was a significant reduction in alanine aminotransferase (ALT) in the synbiotic group compared to the placebo group (-14.92%, CI: -26.60--3.23%, p = 0.013). A stratified analysis according to body fat percentage revealed a significant decrease in ALT (-20.70%, CI: -40.88--0.53%, p = 0.045) in participants with an elevated body fat percentage. Further, a significant change in microbiome composition (1.16, CI: 0.06-2.25, p = 0.039) in this group was found, while the microbial composition remained stable upon intervention in the group with physiological body fat. The 7-week synbiotic intervention reduced ALT levels, especially in participants with an elevated body fat percentage, possibly due to modulation of the gut microbiome. Synbiotic intake may be helpful in delaying the progression of MAFLD and could be used in addition to the recommended lifestyle modification therapy.


Asunto(s)
Alanina Transaminasa , Microbioma Gastrointestinal , Hígado , Simbióticos , Humanos , Simbióticos/administración & dosificación , Masculino , Método Doble Ciego , Adulto , Hígado/metabolismo , Alanina Transaminasa/sangre , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/terapia , Heces/microbiología , Heces/química
11.
ArXiv ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38711434

RESUMEN

Individuals with suspected rare genetic disorders often undergo multiple clinical evaluations, imaging studies, laboratory tests and genetic tests, to find a possible answer over a prolonged period of time. Addressing this "diagnostic odyssey" thus has substantial clinical, psychosocial, and economic benefits. Many rare genetic diseases have distinctive facial features, which can be used by artificial intelligence algorithms to facilitate clinical diagnosis, in prioritizing candidate diseases to be further examined by lab tests or genetic assays, or in helping the phenotype-driven reinterpretation of genome/exome sequencing data. Existing methods using frontal facial photos were built on conventional Convolutional Neural Networks (CNNs), rely exclusively on facial images, and cannot capture non-facial phenotypic traits and demographic information essential for guiding accurate diagnoses. Here we introduce GestaltMML, a multimodal machine learning (MML) approach solely based on the Transformer architecture. It integrates facial images, demographic information (age, sex, ethnicity), and clinical notes (optionally, a list of Human Phenotype Ontology terms) to improve prediction accuracy. Furthermore, we also evaluated GestaltMML on a diverse range of datasets, including 528 diseases from the GestaltMatcher Database, several in-house datasets of Beckwith-Wiedemann syndrome (BWS, over-growth syndrome with distinct facial features), Sotos syndrome (overgrowth syndrome with overlapping features with BWS), NAA10-related neurodevelopmental syndrome, Cornelia de Lange syndrome (multiple malformation syndrome), and KBG syndrome (multiple malformation syndrome). Our results suggest that GestaltMML effectively incorporates multiple modalities of data, greatly narrowing candidate genetic diagnoses of rare diseases and may facilitate the reinterpretation of genome/exome sequencing data.

12.
Front Mol Med ; 2: 933383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-39086979

RESUMEN

Parkinson's Disease (PD) is a neurodegenerative disorder with highly heterogeneous phenotypes. Accordingly, it has been challenging to robustly identify genetic factors associated with disease risk, prognosis and therapy response via genome-wide association studies (GWAS). In this review we first provide an overview of existing statistical methods to detect associations between genetic variants and the disease phenotypes in existing PD GWAS. Secondly, we discuss the potential of machine learning approaches to better quantify disease phenotypes and to move beyond disease understanding towards a better-personalized treatment of the disease.

13.
Med Genet ; 35(2): 89, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840861
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda