Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255863

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) of still unclear etiology. In recent years, the search for biomarkers facilitating its diagnosis, prognosis, therapy response, and other parameters has gained increasing attention. In this regard, in a previous meta-analysis comprising 22 studies, we found that MS is associated with higher nitrite/nitrate (NOx) levels in the cerebrospinal fluid (CSF) compared to patients with non-inflammatory other neurological diseases (NIOND). However, many of the included studies did not distinguish between the different clinical subtypes of MS, included pre-treated patients, and inclusion criteria varied. As a follow-up to our meta-analysis, we therefore aimed to analyze the serum and CSF NOx levels in clinically well-defined cohorts of treatment-naïve MS patients compared to patients with somatic symptom disorder. To this end, we analyzed the serum and CSF levels of NOx in 117 patients (71 relapsing-remitting (RR) MS, 16 primary progressive (PP) MS, and 30 somatic symptom disorder). We found that RRMS and PPMS patients had higher serum NOx levels compared to somatic symptom disorder patients. This difference remained significant in the subgroup of MRZ-negative RRMS patients. In conclusion, the measurement of NOx in the serum might indeed be a valuable tool in supporting MS diagnosis.


Asunto(s)
Enfermedades Autoinmunes , Síntomas sin Explicación Médica , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Estrés Nitrosativo , Sistema Nervioso Central
2.
Curr Opin Neurol ; 35(3): 307-312, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35674073

RESUMEN

PURPOSE OF REVIEW: The introduction some 30 years ago of ß-interferon, followed by a panel of immunomodulators and immunosuppressants has led to a remarkable improvement in the management of multiple sclerosis (MS) patients. Despite these noticeable progresses, which lower the number of relapses and thereby ameliorate patients' quality of life, preventing long-term progression of disability is still an unmet need, highlighting the necessity to develop therapeutic strategies aimed at repairing demyelinated lesions and protecting axons from degeneration. The capacity of human brain to self-regenerate demyelinated lesion has opened a field of research aimed at fostering this endogenous potential. RECENT FINDINGS: The pioneer electron microscopic evidence by Périer and Grégoire [Périer O, Grégoire A. Electron microscopic features of multiple sclerosis lesions. Brain 1965; 88:937-952] suggesting the capacity of human brain to self-regenerate demyelinated lesion has opened a field of research aimed at fostering this endogenous potential. Here we review some recently identified mechanisms involved in the remyelination process, focusing on the role of electrical activity and the involvement of innate immune cells. We then provide an update on current strategies promoting endogenous myelin repair. SUMMARY: Identification of therapeutic targets for remyelination has opened an active therapeutic field in MS. Although still in early phase trials, with heterogenous efficacy, the door for myelin regeneration in MS is now opened.


Asunto(s)
Esclerosis Múltiple , Remielinización , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/patología , Oligodendroglía/patología , Calidad de Vida
3.
J Neuroinflammation ; 19(1): 270, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348455

RESUMEN

BACKGROUND: Cladribine is a synthetic purine analogue that interferes with DNA synthesis and repair next to disrupting cellular proliferation in actively dividing lymphocytes. The compound is approved for the treatment of multiple sclerosis (MS). Cladribine can cross the blood-brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. Here, we explored compartment-specific immunosuppressive as well as potential direct neuroprotective effects of oral cladribine treatment in experimental autoimmune encephalomyelitis (EAE) mice. METHODS: In the current study, we compare immune cell frequencies and phenotypes in the periphery and CNS of EAE mice with distinct grey and white matter lesions (combined active and focal EAE) either orally treated with cladribine or vehicle, using flow cytometry. To evaluate potential direct neuroprotective effects, we assessed the integrity of the primary auditory cortex neuronal network by studying neuronal activity and spontaneous synaptic activity with electrophysiological techniques ex vivo. RESULTS: Oral cladribine treatment significantly attenuated clinical deficits in EAE mice. Ex vivo flow cytometry showed that cladribine administration led to peripheral immune cell depletion in a compartment-specific manner and reduced immune cell infiltration into the CNS. Histological evaluations revealed no significant differences for inflammatory lesion load following cladribine treatment compared to vehicle control. Single cell electrophysiology in acute brain slices was performed and showed an impact of cladribine treatment on intrinsic cellular firing patterns and spontaneous synaptic transmission in neurons of the primary auditory cortex. Here, cladribine administration in vivo partially restored cortical neuronal network function, reducing action potential firing. Both, the effect on immune cells and neuronal activity were transient. CONCLUSIONS: Our results indicate that cladribine exerts a neuroprotective effect after crossing the blood-brain barrier independently of its peripheral immunosuppressant action.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Encefalomielitis , Fármacos Neuroprotectores , Ratones , Animales , Encefalomielitis Autoinmune Experimental/patología , Cladribina/uso terapéutico , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Inmunosupresores/uso terapéutico
4.
J Neurol Neurosurg Psychiatry ; 93(9): 978-985, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35193952

RESUMEN

BACKGROUND: Vaccination has proven to be effective in preventing SARS-CoV-2 transmission and severe disease courses. However, immunocompromised patients have not been included in clinical trials and real-world clinical data point to an attenuated immune response to SARS-CoV-2 vaccines among patients with multiple sclerosis (MS) receiving immunomodulatory therapies. METHODS: We performed a retrospective study including 59 ocrelizumab (OCR)-treated patients with MS who received SARS-CoV-2 vaccination. Anti-SARS-CoV-2-antibody titres, routine blood parameters and peripheral immune cell profiles were measured prior to the first (baseline) and at a median of 4 weeks after the second vaccine dose (follow-up). Moreover, the SARS-CoV-2-specific T cell response and peripheral B cell subsets were analysed at follow-up. Finally, vaccination-related adverse events were assessed. RESULTS: After vaccination, we found anti-SARS-CoV-2(S) antibodies in 27.1% and a SARS-CoV-2-specific T cell response in 92.7% of MS cases. T cell-mediated interferon (IFN)-γ release was more pronounced in patients without anti-SARS-CoV-2(S) antibodies. Antibody titres positively correlated with peripheral B cell counts, time since last infusion and total IgM levels. They negatively correlated with the number of previous infusion cycles. Peripheral plasma cells were increased in antibody-positive patients. A positive correlation between T cell response and peripheral lymphocyte counts was observed. Moreover, IFN-γ release was negatively correlated with the time since the last infusion. CONCLUSION: In OCR-treated patients with MS, the humoral immune response to SARS-CoV-2 vaccination is attenuated while the T cell response is preserved. However, it is still unclear whether T or B cell-mediated immunity is required for effective clinical protection. Nonetheless, given the long-lasting clinical effects of OCR, monitoring of peripheral B cell counts could facilitate individualised treatment regimens and might be used to identify the optimal time to vaccinate.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Vacunas Virales , Anticuerpos Monoclonales Humanizados , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Humanos , Inmunidad , Esclerosis Múltiple/tratamiento farmacológico , Estudios Retrospectivos , SARS-CoV-2 , Vacunación
5.
Mult Scler ; 28(3): 429-440, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34240656

RESUMEN

BACKGROUND: The envelope protein of human endogenous retrovirus W (HERV-W-Env) is expressed by macrophages and microglia, mediating axonal damage in chronic active MS lesions. OBJECTIVE AND METHODS: This phase 2, double-blind, 48-week trial in relapsing-remitting MS with 48-week extension phase assessed the efficacy and safety of temelimab; a monoclonal antibody neutralizing HERV-W-Env. The primary endpoint was the reduction of cumulative gadolinium-enhancing T1-lesions in brain magnetic resonance imaging (MRI) scans at week 24. Additional endpoints included numbers of T2 and T1-hypointense lesions, magnetization transfer ratio, and brain atrophy. In total, 270 participants were randomized to receive monthly intravenous temelimab (6, 12, or 18 mg/kg) or placebo for 24 weeks; at week 24 placebo-treated participants were re-randomized to treatment groups. RESULTS: The primary endpoint was not met. At week 48, participants treated with 18 mg/kg temelimab had fewer new T1-hypointense lesions (p = 0.014) and showed consistent, however statistically non-significant, reductions in brain atrophy and magnetization transfer ratio decrease, as compared with the placebo/comparator group. These latter two trends were sustained over 96 weeks. No safety issues emerged. CONCLUSION: Temelimab failed to show an effect on features of acute inflammation but demonstrated preliminary radiological signs of possible anti-neurodegenerative effects. Current data support the development of temelimab for progressive MS. TRIAL REGISTRATION: CHANGE-MS: ClinicalTrials.gov: NCT02782858, EudraCT: 2015-004059-29; ANGEL-MS: ClinicalTrials.gov: NCT03239860, EudraCT: 2016-004935-18.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Método Doble Ciego , Productos del Gen env/uso terapéutico , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/patología , Resultado del Tratamiento
6.
Proc Natl Acad Sci U S A ; 116(30): 15216-15225, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31213545

RESUMEN

Axonal degeneration is central to clinical disability and disease progression in multiple sclerosis (MS). Myeloid cells such as brain-resident microglia and blood-borne monocytes are thought to be critically involved in this degenerative process. However, the exact underlying mechanisms have still not been clarified. We have previously demonstrated that human endogenous retrovirus type W (HERV-W) negatively affects oligodendroglial precursor cell (OPC) differentiation and remyelination via its envelope protein pathogenic HERV-W (pHERV-W) ENV (formerly MS-associated retrovirus [MSRV]-ENV). In this current study, we investigated whether pHERV-W ENV also plays a role in axonal injury in MS. We found that in MS lesions, pHERV-W ENV is present in myeloid cells associated with axons. Focusing on progressive disease stages, we could then demonstrate that pHERV-W ENV induces a degenerative phenotype in microglial cells, driving them toward a close spatial association with myelinated axons. Moreover, in pHERV-W ENV-stimulated myelinated cocultures, microglia were found to structurally damage myelinated axons. Taken together, our data suggest that pHERV-W ENV-mediated microglial polarization contributes to neurodegeneration in MS. Thus, this analysis provides a neurobiological rationale for a recently completed clinical study in MS patients showing that antibody-mediated neutralization of pHERV-W ENV exerts neuroprotective effects.


Asunto(s)
Axones/virología , Retrovirus Endógenos/metabolismo , Microglía/virología , Esclerosis Múltiple/genética , Neuronas/virología , Proteínas del Envoltorio Viral/genética , Animales , Axones/metabolismo , Axones/ultraestructura , Diferenciación Celular , Ensayos Clínicos Fase II como Asunto , Técnicas de Cocultivo , Retrovirus Endógenos/genética , Retrovirus Endógenos/patogenicidad , Femenino , Expresión Génica , Humanos , Masculino , Microglía/metabolismo , Microglía/ultraestructura , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/virología , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Vaina de Mielina/virología , Neuronas/metabolismo , Neuronas/ultraestructura , Ratas , Ratas Wistar , Proteínas del Envoltorio Viral/metabolismo
7.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362063

RESUMEN

Siponimod (Mayzent®), a sphingosine 1-phosphate receptor (S1PR) modulator which prevents lymphocyte egress from lymphoid tissues, is approved for the treatment of relapsing-remitting and active secondary progressive multiple sclerosis. It can cross the blood-brain barrier (BBB) and selectively binds to S1PR1 and S1PR5 expressed by several cell populations of the central nervous system (CNS) including microglia. In multiple sclerosis, microglia are a key CNS cell population moving back and forth in a continuum of beneficial and deleterious states. On the one hand, they can contribute to neurorepair by clearing myelin debris, which is a prerequisite for remyelination and neuroprotection. On the other hand, they also participate in autoimmune inflammation and axonal degeneration by producing pro-inflammatory cytokines and molecules. In this study, we demonstrate that siponimod can modulate the microglial reaction to lipopolysaccharide-induced pro-inflammatory activation.


Asunto(s)
Azetidinas , Esclerosis Múltiple , Humanos , Microglía/metabolismo , Compuestos de Bencilo/farmacología , Azetidinas/farmacología , Azetidinas/metabolismo , Esclerosis Múltiple/metabolismo
8.
BMC Neurol ; 20(1): 158, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32340606

RESUMEN

BACKGROUND: Fingolimod (Gilenya®), a first-in-class sphingosine-1-phosphate receptor modulator is approved for the treatment of relapsing-remitting multiple sclerosis. Fingolimod-induced selective immunosuppression leads to an increased risk of opportunistic infections such as cryptococcosis. So far, a total of 8 cases of fingolimod-related cryptococcal meningoencephalitis have been published. CASE PRESENTATION: A 49-year-old female with relapsing-remitting multiple sclerosis presented with cephalgia, fever, confusion and generalized weakness. She had been on fingolimod therapy for the past 5.5 years. Clinical examination suggested meningoencephalitis and laboratory findings showed an IgG2 deficiency. Initially no pathogen could be detected, but after 4 days Cryptococcus neoformans was found in the patient's blood cultures leading to the diagnosis of cryptococcal meningoencephalitis. After antimycotic therapy, her symptoms improved and the patient was discharged. CONCLUSION: MS patients on immunomodulatory  therapy are at constant risk for opportunistic infections. Cephalgia, fever and generalized weakness in combination with fingolimod-induced lymphopenia should be considered a red flag for cryptococcosis.


Asunto(s)
Criptococosis/diagnóstico , Clorhidrato de Fingolimod/efectos adversos , Meningoencefalitis/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Femenino , Clorhidrato de Fingolimod/administración & dosificación , Humanos , Inmunoglobulina G/inmunología , Inmunosupresores/uso terapéutico , Linfopenia/inducido químicamente , Persona de Mediana Edad , Infecciones Oportunistas/diagnóstico
9.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570968

RESUMEN

Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células-Madre Neurales/citología , Oligodendroglía/citología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Células Madre Adultas/citología , Animales , Diferenciación Celular , Células Cultivadas , Medios de Cultivo Condicionados/química , Femenino , Células Madre Mesenquimatosas/metabolismo , Cultivo Primario de Células , Proteómica , Ratas , Trasplante de Células Madre
10.
Glia ; 67(1): 160-170, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30430656

RESUMEN

Remyelination in the adult CNS depends on activation, differentiation, and functional integration of resident oligodendroglial precursor cells (OPCs) and constitutes the only spontaneous neuroregenerative process able to compensate for functional deficits upon loss of oligodendrocytes and myelin sheaths as it is observed in multiple sclerosis. The proteins encoded by p57kip2- and by human endogenous retrovirus type W (pHERV-W) envelope genes were previously identified as negative regulators of OPC maturation. We here focused on the activity of the ENV protein and investigated how it can be neutralized for an improved myelin repair. We could demonstrate that myelination in vitro is severely affected by this protein but that application of an anti-ENV neutralizing antibody, currently investigated in clinical trials, can rescue the generation of internodes. We then compared p57kip2 and ENV dependent inhibitory mechanisms and found that a dominant negative version of the p57kip2 protein can equally save OPCs from myelination failure in response to ENV-mediated TLR4 activation. Additional experiments addressing p57kip2's underlying mode of action revealed a direct interaction with ATP6v1d, a central component of a vascular ATPase. Its pharmacological blocking was then shown to exert an analogous myelination rescue effect in presence of the ENV protein. Therefore, our study provides mechanistic insights into oligodendroglial inhibition processes and presents three different means to counteract the anti-myelination effect of the ENV protein. These observations are therefore of interest in light of understanding the complexity of the numerous oligodendroglial inhibitors and might promote the establishment of novel regenerative therapies.


Asunto(s)
Diferenciación Celular/fisiología , Retrovirus Endógenos , Productos del Gen env/toxicidad , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Proteínas Gestacionales/toxicidad , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/farmacología , Femenino , Humanos , Masculino , Vaina de Mielina/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Ratas , Ratas Wistar
11.
Curr Opin Neurol ; 32(3): 378-384, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30865009

RESUMEN

PURPOSE OF REVIEW: Medications for relapsing multiple sclerosis (MS) effectively reduce relapse rate, mitigate disability progression and improve MRI measures of inflammation. However, they have virtually no impact on remyelination which is the major mechanism preventing MS-associated neurodegeneration. Stimulating the generation of myelin-(re)producing cells is therefore a central focus of current MS research and a yet unmet clinical need. Here, we present and evaluate key scientific studies from the field of (therapeutic) remyelination research covering the past 1.5 years. RECENT FINDINGS: On the one hand, recent research in the field of remyelination has strongly focused on repurposing drugs that are already approved for other indications by the Food and Drug Administration or the European Medicines Agency. On the other hand, emerging agents such as the mAbs opicinumab and GNbAC1 target entirely new and unconventional pathways. Some of them have already been tested in clinical trials in which they were found to exert beneficial effects on remyelination as well as on neuroregeneration/neuroprotection. SUMMARY: Several of the agents discussed in this review have shown a high potential as future neuroregenerative drugs. However, future trials with more sensitive clinical and paraclinical primary endpoints will be necessary to prove their effectiveness in MS.


Asunto(s)
Inmunosupresores/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Remielinización/efectos de los fármacos , Sustancia Blanca/efectos de los fármacos , Anticuerpos Monoclonales , Humanos , Inmunosupresores/farmacología , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Fármacos Neuroprotectores/farmacología , Sustancia Blanca/diagnóstico por imagen
12.
Mult Scler ; 25(1): 7-14, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30270725

RESUMEN

Current multiple sclerosis (MS) therapies are effective in reducing relapse rate, short-term measures of disability, and magnetic resonance imaging (MRI) measures of inflammation in relapsing remitting MS (RRMS), whereas in progressive/degenerative disease phases these medications are of little or no benefit. Therefore, the development of new therapies aimed at reversing neurodegeneration is of great interest. Remyelination, which is usually a spontaneous endogenous process, is achieved when myelin-producing oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs). Even though these precursor cells are abundant in MS brains, their regeneration capacity is limited. Enhancing the generation of myelin-producing cells is therefore a major focus of MS research. Here we present an overview of the different advancements in the field of remyelination, including suitable animal models for testing remyelination therapies, approved medications with a proposed role in regeneration, myelin repair treatments under investigation in clinical trials, as well as future therapeutics aimed at facilitating myelin repair.


Asunto(s)
Esclerosis Múltiple/tratamiento farmacológico , Oligodendroglía/efectos de los fármacos , Remielinización/efectos de los fármacos , Animales , Humanos
13.
J Neuroinflammation ; 15(1): 76, 2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29534752

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease of the central nervous system (CNS) which in most cases initially presents with episodes of transient functional deficits (relapsing-remitting MS; RRMS) and eventually develops into a secondary progressive form (SPMS). Aside from neuroimmunological activities, MS is also characterized by neurodegenerative and regenerative processes. The latter involve the restoration of myelin sheaths-electrically insulating structures which are the primary targets of autoimmune attacks. Spontaneous endogenous remyelination takes place even in the adult CNS and is primarily mediated by activation, recruitment, and differentiation of resident oligodendroglial precursor cells (OPCs). However, the overall efficiency of remyelination is limited and further declines with disease duration and progression. From a therapeutic standpoint, it is therefore key to understand how oligodendroglial maturation can be modulated pharmacologically. Teriflunomide has been approved as a first-line treatment for RRMS in the USA and the European Union. As the active metabolite of leflunomide, an established disease-modifying anti-rheumatic drug, it mainly acts via an inhibition of de novo pyrimidine synthesis exerting a cytostatic effect on proliferating B and T cells. METHODS: We investigated teriflunomide-dependent effects on primary rat oligodendroglial homeostasis, proliferation, and differentiation related to cellular processes important for myelin repair hence CNS regeneration in vitro. To this end, several cellular parameters, including specific oligodendroglial maturation markers, in vitro myelination, and p53 family member signaling, were examined by means of gene/protein expression analyses. The rate of myelination was determined using neuron-oligodendrocyte co-cultures. RESULTS: Low teriflunomide concentrations resulted in cell cycle exit while higher doses led to decreased cell survival. Short-term teriflunomide pulses can efficiently promote oligodendroglial cell differentiation suggesting that young, immature cells could benefit from such stimulation. In vitro myelination can be boosted by means of an early stimulation window with teriflunomide. p73 signaling is functionally involved in promoting OPC differentiation and myelination. CONCLUSION: Our findings indicate a critical window of opportunity during which regenerative oligodendroglial activities including myelination of CNS axons can be stimulated by teriflunomide.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Crotonatos/farmacología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Oligodendroglía/efectos de los fármacos , Toluidinas/farmacología , 2',3'-Nucleótido Cíclico Fosfodiesterasas/genética , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hidroxibutiratos , Carioferinas/genética , Carioferinas/metabolismo , Masculino , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Nitrilos , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Ratas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Exportina 1
14.
Mult Scler ; 24(6): 696-700, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29629605

RESUMEN

BACKGROUND: While there is now a multitude of potent medications for relapsing-remitting multiple sclerosis (RRMS), effective therapies targeting neurodegeneration in progressive multiple sclerosis types are still lacking. Stimulation of neurorepair in this disease remains a pathogenetically defined treatment goal. However, therapeutic progress is slowed by the still inadequate tool set to capture "regeneration/repair" in MS and to define appropriate outcomes in clinical trials. OBJECTIVES: In this review, we discuss studies investigating promising regenerative agents for progressive MS which were recently presented during the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS)/Americas Committee for Treatment and Research in Multiple Sclerosis (ACTRIMS) 2017 meeting in Paris.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Regeneración Nerviosa/efectos de los fármacos , Femenino , Humanos , Masculino
16.
J Neurosci ; 35(3): 906-19, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609610

RESUMEN

Multiple sclerosis is an autoimmune disease of the CNS resulting in degeneration of myelin sheaths and loss of oligodendrocytes, which means that protection and electrical insulation of axons and rapid signal propagation are impaired, leading to axonal damage and permanent disabilities. Partial replacement of lost oligodendrocytes and remyelination can occur as a result of activation and recruitment of resident oligodendroglial precursor cells. However, the overall remyelination capacity remains inefficient because precursor cells often fail to generate new oligodendrocytes. Increasing evidence points to the existence of several molecular inhibitors that act on these cells and interfere with their cellular maturation. The p57kip2 gene encodes one such potent inhibitor of oligodendroglial differentiation and this study sheds light on the underlying mode of action. We found that subcellular distribution of the p57kip2 protein changed during differentiation of rat, mouse, and human oligodendroglial cells both in vivo and in vitro. Nuclear export of p57kip2 was correlated with promoted myelin expression, higher morphological phenotypes, and enhanced myelination in vitro. In contrast, nuclear accumulation of p57kip2 resulted in blocked oligodendroglial differentiation. Experimental evidence suggests that the inhibitory role of p57kip2 depends on specific interactions with binding proteins such as LIMK-1, CDK2, Mash1, and Hes5 either by controlling their site of action or their activity. Because functional restoration in demyelinating diseases critically depends on the successful generation of oligodendroglial cells, a therapeutic need that is currently unmet, the regulatory mechanism described here might be of particular interest for identifying suitable drug targets and devising novel therapeutic approaches.


Asunto(s)
Diferenciación Celular/fisiología , Núcleo Celular/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Oligodendroglía/metabolismo , Transporte Activo de Núcleo Celular , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Corteza Cerebelosa/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Humanos , Quinasas Lim/metabolismo , Ratones , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/citología , Transporte de Proteínas/fisiología , Ratas , Ratas Wistar , Proteínas Represoras/metabolismo
17.
Mult Scler ; 21(5): 541-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25623245

RESUMEN

Myelin destruction due to inflammatory oligodendrocyte cell damage or death in conjunction with axonal degeneration are among the major histopathological hallmarks of multiple sclerosis (MS). The majority of available immunomodulatory medications for MS are approved for relapsing-remitting (RR) MS, for which they reduce relapse rate, MRI measures of inflammation, and the accumulation of disability. These medications are, however, of little benefit during progressive MS where axonal degeneration following demyelination outweighs inflammation. This has sparked great interest in the development of new remyelination therapies aimed at reversing the neurodegenerative damage observed in this disease. Remyelination as a result of oligodendrocyte production from oligodendrocyte precursor cells (OPCs) is considered a promising potential target for the treatment of all stages of MS. In this review we present an overview of a) approved medications (some of them FDA-and EMA-approved for other diseases) with a proposed role in regeneration, b) regenerative treatments under investigation in clinical trials, and c) promising future therapeutic approaches aiming specifically at facilitating endogenous repair.


Asunto(s)
Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Vaina de Mielina/efectos de los fármacos , Humanos , Vaina de Mielina/patología , Regeneración Nerviosa/efectos de los fármacos , Oligodendroglía
18.
Mult Scler ; 21(9): 1200-3, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25480862

RESUMEN

BACKGROUND: The envelope protein (ENV) of the human endogenous retrovirus type W is implicated in inflammatory reactions in multiple sclerosis (MS) but also interferes with oligodendroglial maturation. A neutralizing antibody GNbAC1 has been developed and successfully been tested in clinical trials. OBJECTIVES AND METHODS: We stimulated primary oligodendroglial cells with ENV upon preincubation with GNbAC1 and assessed for nitrosative stress and myelin expression. RESULTS: Neutralization of ENV by GNbAC1 reduces its ability to induce stress reactions resulting in a rescue of myelin expression. CONCLUSIONS: Beyond immune cell modulation, this monoclonal antibody may therefore help to overcome the oligodendroglial differentiation blockade in MS.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/farmacología , Diferenciación Celular/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Línea Celular , Retrovirus Endógenos , Humanos , Oligodendroglía/citología , Oligodendroglía/virología , Proteínas del Envoltorio Viral
19.
Ann Neurol ; 74(5): 721-32, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23836485

RESUMEN

OBJECTIVE: Differentiation of oligodendroglial precursor cells is crucial for central nervous system remyelination and is influenced by both extrinsic and intrinsic factors. Recent studies showed that human endogenous retrovirus type W (HERV-W) contributes significantly to brain damage. In particular, its envelope protein ENV can mediate injury to specific cell types of the brain and immune system. Here, we investigated whether ENV protein affects oligodendroglial differentiation. METHODS: Immunostaining and gene expression analyses were performed to establish the expression and regulation of the known ENV receptor, Toll-like receptor 4 (TLR4), on oligodendroglial precursor cells in human brain tissue and in culture. Cultured primary oligodendroglial precursor cells were stimulated with ENV protein to determine the effects of this ligand/receptor interaction. RESULTS: We demonstrated that the ENV protein is present in close proximity to TLR4-expressing oligodendroglial precursor cells adjacent to multiple sclerosis lesions. Human and rat oligodendroglial precursor cells expressed TLR4, and the ENV-mediated activation of TLR4 led to the induction of proinflammatory cytokines and inducible nitric oxide synthase as well as the formation of nitrotyrosine groups and a subsequent reduction in myelin protein expression. INTERPRETATION: Our findings suggest that ENV-mediated induction of nitrosative stress via activation of TLR4 results in an overall reduction of the oligodendroglial differentiation capacity, thereby contributing to remyelination failure. Therefore, pharmacological or antibody-mediated inhibition of ENV may prevent the blockade of myelin repair in the diseased or injured central nervous system.


Asunto(s)
Diferenciación Celular , Productos del Gen env/metabolismo , Vaina de Mielina/metabolismo , Células-Madre Neurales/citología , Oligodendroglía/citología , Proteínas Gestacionales/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Productos del Gen env/genética , Humanos , Vaina de Mielina/genética , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Proteínas Gestacionales/genética , Ratas , Receptor Toll-Like 4/genética
20.
Glia ; 61(8): 1250-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23828667

RESUMEN

Impaired remyelination in multiple sclerosis (MS) might be due to the failure of oligodendrocyte precursor cells (OPC) to differentiate into myelinating oligodendrocytes. Animal experimental data have shown that p57kip2 inhibits oligodendroglial differentiation, indicating that this factor could contribute to remyelination failure. This study investigates oligodendroglial p57kip2 expression and its association with remyelination in MS lesions. To analyze the potential association of p57kip2 expression with human oligodendroglial maturation, double immunofluorescence staining was performed on brain tissue from 30 MS patients and 20 controls. Anti-p57kip2 antibody was combined with either anti-Nogo-A to label mature oligodendrocytes or anti-Olig2 antibodies to identify immature OPCs. We evaluated MS lesions with or without remyelination, the periplaque white matter (PPWM) as well as control white matter (WM). p57kip2-expressing cells were assessed and correlated with the extent of remyelination. Most Nogo-A-positive oligodendrocytes (range, 87-98%) and all Olig2strong-positive OPCs expressed p57kip2 in MS lesions, in the PPWM and in control WM. p57kip2 expression in oligodendrocytes and OPCs were similar in MS lesions with remyelination compared to MS lesions lacking remyelination. Interestingly, all oligodendroglial lineage cells showed nuclear p57kip2 expression only, with mature oligodendrocytes expressing p57kip2 at low or intermediate levels and OPCs featuring strong expression levels, indicating that this factor may be dynamically expressed during maturation processes. Therefore, p57kip2 appears to be widely expressed in the human oligodendroglial lineage, and potential beneficial effects on remyelination in the MS brain are not based on subcellular p57kip2 localization shifts, as suggested by previous animal experiments.


Asunto(s)
Inhibidor p57 de las Quinasas Dependientes de la Ciclina/biosíntesis , Regulación de la Expresión Génica , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Adolescente , Adulto , Anciano , Linaje de la Célula/genética , Niño , Preescolar , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/genética , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda