Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Publication year range
1.
BMC Microbiol ; 20(1): 13, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941452

RESUMEN

BACKGROUND: Thaumarchaeota are abundant in the Amazon River, where they are the only ammonia-oxidizing archaea. Despite the importance of Thaumarchaeota, little is known about their physiology, mainly because few isolates are available for study. Therefore, information about Thaumarchaeota was obtained primarily from genomic studies. The aim of this study was to investigate the ecological roles of Thaumarchaeota in the Amazon River and the Amazon River plume. RESULTS: The archaeal community of the shallow in Amazon River and its plume is dominated by Thaumarchaeota lineages from group 1.1a, which are mainly affiliated to Candidatus Nitrosotenuis uzonensis, members of order Nitrosopumilales, Candidatus Nitrosoarchaeum, and Candidatus Nitrosopelagicus sp. While Thaumarchaeota sequences have decreased their relative abundance in the plume, Candidatus Nitrosopelagicus has increased. One genome was recovered from metagenomic data of the Amazon River (ThauR71 [1.05 Mpb]), and two from metagenomic data of the Amazon River plume (ThauP25 [0.94 Mpb] and ThauP41 [1.26 Mpb]). Phylogenetic analysis placed all three Amazon genome bins in Thaumarchaeota Group 1.1a. The annotation revealed that most genes are assigned to the COG subcategory coenzyme transport and metabolism. All three genomes contain genes involved in the hydroxypropionate/hydroxybutyrate cycle, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation. However, ammonia-monooxygenase genes were detected only in ThauP41 and ThauR71. Glycoside hydrolases and auxiliary activities genes were detected only in ThauP25. CONCLUSIONS: Our data indicate that Amazon River is a source of Thaumarchaeota, where these organisms are important for primary production, vitamin production, and nitrification.


Asunto(s)
Archaea/clasificación , Genoma Arqueal , Ríos/microbiología , Análisis de Secuencia de ADN/métodos , Archaea/genética , Archaea/aislamiento & purificación , Composición de Base , Tamaño del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Filogenia
2.
Archaea ; 2019: 6957210, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30833827

RESUMEN

The Cerrado biome corresponds to an extensive area of Brazil and is considered a biodiversity hotspot. Frequent fires are a natural feature in this biome and have influences on vegetation structure and composition. However, continuous anthropogenic actions are promoting changes in fire frequency and seasonality. Despite the high biodiversity of the Cerrado, little is known about its microbiome, with few publications describing some aspects of the bacterial and fungal communities found on this biome and almost no references about archaea. In this study, we describe the archaeal diversity in Cerrado sensu stricto soils, comparing the archaeal communities from soils of an area long protected from fires to one exposed to biennial fires, using both 16S rRNA and amoA genes as molecular markers. Almost all 16S rRNA sequences from both studied areas were affiliated with I.1b and 1.1c Thaumarchaeota, groups commonly detected in terrestrial environments. A higher relative abundance of I.1b thaumarchaeal subgroup was detected in the frequently burned area even though no statistically significant differences were observed in archaeal 16S rRNA richness and diversity between the investigated areas. Many ammonia-oxidizing archaea (AOA) are affiliated with this group, which is consistent with the higher amoA diversity and OTU numbers detected in the area periodically burned. Taken together, our results suggest that, although total archaeal community richness and diversity do not seem to greatly differ between the investigated conditions, alterations in wood cover and vegetation structure caused by frequent fires likely cause long-term effects in AOA diversity in Cerrado soils.


Asunto(s)
Archaea/clasificación , Archaea/efectos de la radiación , Biota/efectos de la radiación , Incendios , Microbiología del Suelo , Proteínas Arqueales/genética , Brasil , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Oxidorreductasas/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tiempo
3.
Curr Microbiol ; 76(6): 687-697, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30953134

RESUMEN

Although some previous studies have described the microbial diversity of termite in Brazil, the lack of studies about this subject is still evident. In the present study, we described by whole genome sequencing, the gut microbiota of seven species of termites (Termitidae) with different feeding habits from four Brazilian locations. For the litter species, the most abundant bacterial phylum was Firmicutes, where Cornitermes cumulans and Syntermes dirus (Syntermitinae) were identified. For the humus species, the most abundant bacterial phylum was Proteobacteria where three species were studied: Cyrilliotermes strictinasus (Syntermitinae), Grigiotermes bequaerti (Apicotermitinae), and Orthognathotermes mirim (Termitinae). For the wood termites, Firmicutes and Spirochaetes were the most abundant phyla, respectively, where two species were identified: Nasutitermes aquilinus and Nasutitermes jaraguae (Nasutitermitinae). The gut microbiota of all four examined subfamilies shared a conserved functional and carbohydrate-active enzyme profile and specialized in cellulose and chitin degradation. Taken together, these results provide insight into the partnerships between termite and microbes that permit the use of refractory energy sources.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Microbioma Gastrointestinal , Isópteros/microbiología , Animales , Biodiversidad , Brasil , Conducta Alimentaria , Isópteros/fisiología , Metagenómica
4.
BMC Genomics ; 15: 511, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24952588

RESUMEN

BACKGROUND: Obesity is a multifactor disease associated with cardiovascular disorders such as hypertension. Recently, gut microbiota was linked to obesity pathogenesisand shown to influence the host metabolism. Moreover, several factors such as host-genotype and life-style have been shown to modulate gut microbiota composition. Exercise is a well-known agent used for the treatment of numerous pathologies, such as obesity and hypertension; it has recently been demonstrated to shape gut microbiota consortia. Since exercise-altered microbiota could possibly improve the treatment of diseases related to dysfunctional microbiota, this study aimed to examine the effect of controlled exercise training on gut microbial composition in Obese rats (n = 3), non-obese Wistar rats (n = 3) and Spontaneously Hypertensive rats (n = 3). Pyrosequencing of 16S rRNA genes from fecal samples collected before and after exercise training was used for this purpose. RESULTS: Exercise altered the composition and diversity of gut bacteria at genus level in all rat lineages. Allobaculum (Hypertensive rats), Pseudomonas and Lactobacillus (Obese rats) were shown to be enriched after exercise, while Streptococcus (Wistar rats), Aggregatibacter and Sutturella (Hypertensive rats) were more enhanced before exercise. A significant correlation was seen in the Clostridiaceae and Bacteroidaceae families and Oscillospira and Ruminococcus genera with blood lactate accumulation. Moreover, Wistar and Hypertensive rats were shown to share a similar microbiota composition, as opposed to Obese rats. Finally, Streptococcus alactolyticus, Bifidobacterium animalis, Ruminococcus gnavus, Aggregatibacter pneumotropica and Bifidobacterium pseudolongum were enriched in Obese rats. CONCLUSIONS: These data indicate that non-obese and hypertensive rats harbor a different gut microbiota from obese rats and that exercise training alters gut microbiota from an obese and hypertensive genotype background.


Asunto(s)
Tracto Gastrointestinal/microbiología , Microbiota , Condicionamiento Físico Animal , Animales , Hipertensión , Obesidad , Ratas
5.
Archaea ; 2014: 957145, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25147480

RESUMEN

The Cerrado is a biome that corresponds to 24% of Brazil's territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked differences between the archaeal communities found in the two seasons. I.1a and I.1c Thaumarchaeota were found in greater numbers in the transition period, while MCG Archaea was dominant on the dry season. Methanogens were only found in the dry season. Analysis of 16S rRNA sequences revealed lower diversity on the transition period. We detected archaeal amoA sequences in both seasons, but there were more OTUs during the dry season. These sequences were within the same cluster as Nitrosotalea devanaterra's amoA gene. The principal coordinate analysis (PCoA) test revealed significant differences between samples from different seasons. These results provide information on archaeal diversity in freshwater lake sediments of the Cerrado and indicates that rain is likely a factor that impacts these communities.


Asunto(s)
Archaea/clasificación , Biodiversidad , Sedimentos Geológicos/microbiología , Lagos/microbiología , Brasil , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Oxidorreductasas/genética , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año , Análisis de Secuencia de ADN
6.
Enzyme Microb Technol ; 179: 110468, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38850683

RESUMEN

Lignin is an aromatic macromolecule and one of the main constituents of lignocellulosic materials. Kraft lignin is generated as a residual by-product of the lignocellulosic biomass industrial process, and it might be used as a feedstock to generate low molecular weight aromatic compounds. In this study, we seek to understand and explore the potential of ruminal bacteria in the degradation of kraft lignin. We established two consortia, KLY and KL, which demonstrated significant lignin-degrading capabilities. Both consortia reached maximum growth after two days, with KLY showing a higher growth and decolorization rate. Additionally, SEM analysis revealed morphological changes in the residual lignin from both consortia, indicating significant degradation. This was further supported by FTIR spectra, which showed new bands corresponding to the C-H vibrations of guaiacyl and syringyl units, suggesting structural transformations of the lignin. Taxonomic analysis showed enrichment of the microbial community with members of the Dickeya genus. Seven metabolic pathways related to lignin metabolism were predicted for the established consortia. Both consortia were capable of consuming aromatic compounds such as 4-hydroxybenzoic acid, syringaldehyde, acetovanillone, and syringic acid, highlighting their capacity to convert aromatic compounds into commercially valuable molecules presenting antifungal activity and used as food preservatives as 4-hydroxyphenylacetic, 3-phenylacetic, and phenylacetic acids. Therefore, the microbial consortia shown in the present work are models for understanding the process of lignin degradation and consumption in bacterial anaerobic communities and developing biological processes to add value to industrial processes based on lignocellulosic biomass as feedstock.


Asunto(s)
Lignina , Lignina/metabolismo , Anaerobiosis , Rumen/microbiología , Rumen/metabolismo , Animales , Consorcios Microbianos , Biodegradación Ambiental , Biomasa , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo
7.
Sci Total Environ ; 879: 163256, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37011689

RESUMEN

Sponges from South America and Antarctica are evolutionarily closely related. Specific symbiont signatures that could differentiate these two geographic regions are unknown. This study aimed to investigate the microbiome diversity of sponges from South America and Antarctica. In total 71 sponge specimens were analyzed (Antarctica: N = 59, 13 different species; South America: N = 12, 6 different species). Illumina 16S rRNA sequences were generated (2.88 million sequences; 40K ± 29K/sample). The most abundant symbionts were heterotrophic (94.8 %) and belonged mainly to Proteobacteria and Bacteroidota. EC94 was the most abundant symbiont and dominated the microbiome of some species (70-87 %), comprising at least 10 phylogroups. Each of the EC94 phylogroups was specific to one genus or species of sponge. Furthermore, South America sponges had higher abundance of photosynthetic microorganisms (2.3 %) and sponges from Antarctica, the highest abundance of chemosynthetic (5.5 %). Sponge symbionts may contribute to the function of their hosts. The unique features from each of these two regions (e.g., light, temperature, and nutrients) possibly stimulate distinct microbiome diversity from sponges biogeographically distributed across continents.


Asunto(s)
Microbiota , Fotosíntesis , ARN Ribosómico 16S/genética , Regiones Antárticas , Bacteroidetes/genética , Filogenia
8.
Microb Ecol ; 64(3): 760-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22570118

RESUMEN

The Brazilian Cerrado is the second largest biome in Brazil and is considered a biodiversity hotspot. In this work, we compared the bacterial communities in Cerrado soil associated with four types of native vegetation (Cerrado Denso, Cerrado sensu stricto, Campo Sujo, and Mata de Galeria) by ribosomal RNA intergenic spacer analysis, terminal fragment restriction length polymorphism and pyrosequencing. The fingerprinting results were very similar. The bacterial communities of Cerrado Denso and Cerrado sensu stricto grouped together and were distinct from those in Campo Sujo and Mata de Galeria. Pyrosequencing generated approximately 40,000 16S rRNA gene sequences per sample and allowed the identification of 17 phyla in soil samples under Cerrado vegetation. Acidobacteria were dominant in all areas studied with a relative frequency of 40-47 %, followed closely by Proteobacteria accounting for 34-40 % of the sequences. Results from all molecular techniques used suggested that the bacterial communities of Cerrado sensu stricto and Cerrado Denso are very similar to each other, while Campo Sujo forms a separate group, and Mata de Galeria is the most distinct with higher species richness. This is the first extensive study of native Cerrado soil microbiota, an important but endangered biome.


Asunto(s)
Acidobacteria/genética , Bacterias/genética , Ecosistema , Microbiología del Suelo , Acidobacteria/clasificación , Acidobacteria/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Brasil , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN Espaciador Ribosómico/análisis , ADN Espaciador Ribosómico/genética , Datos de Secuencia Molecular , Poaceae , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/análisis , Árboles
9.
Sci Total Environ ; 847: 157474, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35868367

RESUMEN

Sponges have co-evolved with microbes for over 400 myr. Previous studies have demonstrated that sponges can be classified according to the abundance of microbes in their tissues as Low Microbial Abundance (LMA) and High Microbial Abundance (HMA). While LMA sponges rely mainly on water column microbes, HMA appear to rely much more on symbiotic fermentative and autotrophic microbes maintained in their tissues. However, it is unclear if this pattern holds when comparing different species of tropical sponges under extreme nutrient conditions and sediment loads in the water column, such as the Great Amazon Reef System (GARS), which covers an area of ~56,000 km2 off the Amazon River mouth. Sponges are the major GARS benthic components. However, these sponges' microbiome across the GARS is still unknown. Here, we investigated water quality, isotopic values (δ13C and δ15N), metagenomic and lipidomic profiles of sponges obtained from different sectors throughout the GARS. >180 million shotgun metagenomic reads were annotated, covering 22 sponge species. Isotopic and lipidomic analyses suggested LMA sponges rely on the Amazon River Plume for nutrition. HMA sponges (N = 15) had higher Roseiflexus and Nitrospira abundance, whereas LMA sponges (N = 7) had higher Prochlorococcus and Pelagibacter abundance. Functional data revealed that the LMA sponge microbiomes had greater number of sequences related to phages and prophages as well as electron transport and photophosphorylation which may be related to photosynthetic processes associated with the Prochlorococcus and Synechococcus found in the LMA. The higher phages abundance in LMA sponges could be related to these holobionts' reduced defense towards phage infection. Meanwhile, HMA sponge microbiomes had higher Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR abundance, which may be involved in defense against phage infection. This study sheds light on the nutrient fluxes and microbes from the Amazon River plume into the sponge holobionts.


Asunto(s)
Poríferos , Ríos , Animales , Nutrientes , Filogenia , ARN Ribosómico 16S
10.
Anaerobe ; 17(3): 118-24, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21575735

RESUMEN

Most studies present in the literature about the rumen microbiome have focused on cattle and sheep. This is the first report of the characterization of the bacterial and archaeal communities present in the liquid and solid-associated fractions of the rumen from free ranging Moxotó breed goats using 16S rRNA gene libraries. PCR was used to amplify the 16S rRNA gene with bacterial and archaeal universal primers and sequences from each library constructed were obtained. Sequences of Bacteria from the phyla Bacteroidetes and Firmicutes were predominant. The overall dominant classes in the rumen were Clostridia and Bacteroidia, which are known to play a role in plant fiber degradation in other ruminants. Unclassified Bacteria accounted for 4.7% of the liquid fraction sequences and 16.4% of the solid fraction sequences. From the archaeal libraries only sequences from the phylum Euryarcheota were identified and were assigned to the class Methanobacteria of the genera Methanobrevibacter and Methanosphaera. A group of Archaea not previously known to be associated with the rumen was identified: uncultured methanogens belonging to the "uncultured marine bacteria" groups II and III. The local water contained high salt concentrations and this may explain the presence of these groups in the Moxotó goat rumen.


Asunto(s)
Archaea/genética , Bacterias/genética , Cabras/microbiología , Metagenoma , Rumen/microbiología , Animales , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Secuencia de Bases , Biota , Brasil , Femenino , Biblioteca de Genes , Genes Arqueales , Genes Bacterianos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Microb Ecol ; 60(4): 840-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20886336

RESUMEN

The aim of this study was to characterize the bacterial community diversity of the Brazilian Atlantic forest soil by means of both cultivation and 16S rRNA clone libraries. A collection of 86 representative isolates, obtained from six samples of Atlantic forest soils from the National Park of Serra dos Órgãos (PARNASO), belonged to the genera Arthrobacter, Bacillus, Burkholderia, Leifsonia, Paenibacillus, Pseudomonas, Ralstonia, Serratia, and Streptomyces according to the 16S rRNA sequences. Representative isolates from the different genera degraded cellulose and lignin. The culture-independent analysis based on 894 partial 16S rRNA gene sequences revealed that the most frequently retrieved groups belonged to the phyla Acidobacteria (29-54%), Proteobacteria (16-38%), and Verrucomicrobia (0.6-14%). The majority of the sequences (82.6%) were unidentified singletons and doubletons, indicating a high diversity of rare unique sequences. Chao1 estimator disclosed a high number of phyla (41-152) and species (263-446). This is the first survey on the Atlantic Forest soils using a combination of cultivation and culture-independent approaches. We conclude that the Brazilian Atlantic Forest soil represents a vast source of novel bacteria.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo , Brasil , ADN Bacteriano/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Suelo/análisis , Árboles/microbiología
12.
Microb Ecol ; 59(4): 658-67, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20352207

RESUMEN

In order to characterize the bacterial community diversity associated to mucus of the coral Mussismilia hispida, four 16S rDNA libraries were constructed and 400 clones from each library were analyzed from two healthy colonies, one diseased colony and the surrounding water. Nine bacterial phyla were identified in healthy M. hispida, with a dominance of Proteobacteria, Actinobacteria, Acidobacteria, Lentisphaerae, and Nitrospira. The most commonly found species were related to the genera Azospirillum, Hirschia, Fabibacter, Blastochloris, Stella, Vibrio, Flavobacterium, Ochrobactrum, Terasakiella, Alkalibacter, Staphylococcus, Azospirillum, Propionibacterium, Arcobacter, and Paenibacillus. In contrast, diseased M. hispida had a predominance of one single species of Bacteroidetes, corresponding to more than 70% of the sequences. Rarefaction curves using evolutionary distance of 1% showed a greater decrease in bacterial diversity in the diseased M. hispida, with a reduction of almost 85% in OTUs in comparison to healthy colonies. integral-Libshuff analyses show that significant p values obtained were <0.0001, demonstrating that the four libraries are significantly different. Furthermore, the sympatric corals M. hispida and Mussismilia braziliensis appear to have different bacterial community compositions according to Principal Component Analysis and Lineage-specific Analysis. Moreover, lineages that contribute to those differences were identified as alpha-Proteobacteria, Bacteroidetes, and Firmicutes. The results obtained in this study suggest host-microbe co-evolution in Mussismilia, and it was the first study on the diversity of the microbiota of the endemic and endangered of extinction Brazilian coral M. hispida from Abrolhos bank.


Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Evolución Biológica , Brasil , ADN Bacteriano/genética , ADN Ribosómico/genética , Biblioteca de Genes , Filogenia , Análisis de Componente Principal , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
13.
Microbiol Res ; 164(1): 59-70, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-17324564

RESUMEN

The Brazilian savanna-like vegetation of Cerrado is rapidly being converted to pasture and agricultural fields. A 16S rDNA-based approach was taken to study the bacterial community associated with the soil of a native cerrado area (sensu stricto) and an area that has been converted to pasture. The bacterial group most abundantly identified in cerrado sensu stricto soil was the alpha-Proteobacteria while in cerrado converted to pasture the Actinobacteria were the most abundant. Rarefaction curves indicate that the species richness of cerrado sensu stricto is greater than that of cerrado converted to pasture. Furthermore, lineage-through-time plots show that the expected richness of species present in cerrado sensu stricto soil is approximately 10 times greater than that of cerrado converted to pasture.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Filogenia , Microbiología del Suelo , Bacterias/genética , Brasil , ADN Bacteriano/genética , ADN Ribosómico/genética , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Clima Tropical
14.
Genome Announc ; 6(22)2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29853503

RESUMEN

We report the whole-genome sequence of Muricauda sp. strain K001 isolated from a marine cyanobacterial culture. This genome sequence will improve our understanding of the influence of heterotrophic bacteria on the physiology of cyanobacteria and may contribute to the development of new natural products.

15.
J Hazard Mater ; 324(Pt B): 634-644, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27889181

RESUMEN

Discarded PE-based products pose a social and environmental threat because of their recalcitrance to degradation, a consequence of the unique set of PE's physicochemical properties. In this study we isolated nine novel PE-degrading bacteria from plastic debris found in soil of the savanna-like Brazilian Cerrado. These bacterial strains from the genera Comamonas, Delftia, and Stenotrophomonas showed metabolic activity and cellular viability after a 90-day incubation with PE as the sole carbon source. ATR/FTIR indicated that biodegraded PE undergone oxidation, vinylene formation, chain scission, among other chemical changes. Considerable nanoroughness shifts and vast damages to the micrometric surface were confirmed by AFM and SEM. Further, phase imaging revealed a 46.7% decrease in the viscous area of biodegraded PE whereas Raman spectroscopy confirmed a loss in its crystalline content, suggesting the assimilation of smaller fragments. Intriguingly, biodegraded PE chemical fingerprint suggests that these strains use novel biochemical strategies in the biodegradation process. Our results indicate that these microbes are capable of degrading unpretreated PE of very high molecular weight (191,000gmol-1) and survive for long periods under this condition, suggesting not only practical applications in waste management and environmental decontamination, but also future directions to understand the unraveled metabolism of synthetic polymers.


Asunto(s)
Comamonas/metabolismo , Delftia/metabolismo , Polietileno/análisis , Contaminantes del Suelo/análisis , Stenotrophomonas/metabolismo , Adhesión Bacteriana , Brasil , Comamonas/aislamiento & purificación , Delftia/aislamiento & purificación , Viabilidad Microbiana , Aceite Mineral/análisis , Aceite Mineral/metabolismo , Modelos Teóricos , Polietileno/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Stenotrophomonas/aislamiento & purificación
16.
Trends Biotechnol ; 35(12): 1119-1121, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28890138

RESUMEN

Fulfilling the promise of marine biotechnology as a source for environmental and biomedical applications remains challenging. New technologies will be necessary to harness marine biodiversity, and collaboration across government, academic, and private sectors will be crucial to create mechanisms of technology transfer and promote the development of new marine biotechnology companies.


Asunto(s)
Biodiversidad , Biotecnología/economía , Biotecnología/tendencias , Países en Desarrollo/economía , Biología Marina/economía , Biología Marina/tendencias , Acuicultura/economía , Acuicultura/tendencias , Organismos Acuáticos , Tecnología Biomédica/economía , Tecnología Biomédica/tendencias , Salud Ambiental/economía , Salud Ambiental/tendencias , Humanos , Océanos y Mares , Organización para la Cooperación y el Desarrollo Económico , Transferencia de Tecnología
17.
Int J Microbiol ; 2014: 156341, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309599

RESUMEN

16S rRNA sequences from the phylum Acidobacteria have been commonly reported from soil microbial communities, including those from the Brazilian Savanna (Cerrado) and the Atlantic Forest biomes, two biomes that present contrasting characteristics of soil and vegetation. Using 16S rRNA sequences, the present work aimed to study acidobacterial diversity and distribution in soils of Cerrado savanna and two Atlantic forest sites. PCA and phylogenetic reconstruction showed that the acidobacterial communities found in "Mata de galeria" forest soil samples from the Cerrado biome have a tendency to separate from the other Cerrado vegetation microbial communities in the direction of those found in the Atlantic Forest, which is correlated with a high abundance of Acidobacteria subgroup 2 (GP2). Environmental conditions seem to promote a negative correlation between GP2 and subgroup 1 (GP1) abundance. Also GP2 is negatively correlated to pH, but positively correlated to high Al(3+) concentrations. The Cerrado soil showed the lowest Acidobacteria richness and diversity indexes of OTUs at the species and subgroups levels when compared to Atlantic Forest soils. These results suggest specificity of acidobacterial subgroups to soils of different biomes and are a starting point to understand their ecological roles, a topic that needs to be further explored.

18.
AMB Express ; 2(1): 18, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22452812

RESUMEN

In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

19.
Environ Microbiol Rep ; 2(1): 90-5, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23766002

RESUMEN

We performed the first taxonomic characterization of vibrios and other culturable microbiota from apparently healthy and diseased Brazilian-endemic corals at the Abrolhos reef bank. The diseases affecting corals were tissue necrosis in Phyllogorgia dillatata, white plague and bleaching in Mussismilia braziliensis and bleaching in Mussismilia hispida. Bacterial isolates were obtained from mucus of 22 coral specimens originated from the Abrolhos Bank (i.e. Itacolomis reef, Recife de Fora reef and Santa Barbara Island) in 2007. Vibrios counts in the water and coral mucus were approximately 104 cfu ml(-1) and 106 cfu ml(-1) respectively. One hundred and thirty-one representative vibrio isolates were identified. Most vibrio isolates (n = 79) fell into the core group using the pyrH identification marker. According to our analysis, diseased corals did not possess a unique vibrio microbiota. Vibrio species encompassed strains originated from both apparently healthy and diseased corals. The pathogenic potential of representative vibrio isolates (V. alginolyticus 40B, V. harveyi-like 1DA3 and V. coralliilyticus 2DA3) were evaluated in a standardized bioassay using the animal model Drosophila melanogaster and caused 25-88% mortality. This is the first taxonomic characterization of the culturable microbiota from the Brazilian-endemic corals. Endemic Brazilian corals are a reservoir of the vibrio core group. Vibrio alginolyticus, V. harveyi and V. coralliilyticus are dominant in the mucus of these corals and may be a normal component of the holobiont.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda