Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Nano Lett ; 22(18): 7285-7293, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36067362

RESUMEN

Achieving long-term (>3 months) colloidal stability of upconversion nanoparticles (UCNPs) in biologically relevant buffers has been a major challenge, which has severely limited practical implementation of UCNPs in bioimaging and nanomedicine applications. To address this challenge, nine unique copolymers formulations were prepared and evaluated as UCNP overcoatings. These polymers consisted of a poly(isobutylene-alt-maleic anhydride) (PIMA) backbone functionalized with different ratios and types of phosphonate anchoring groups and poly(ethylene glycol) (PEG) moieties. The syntheses were done as simple, one-pot nucleophilic addition reactions. These copolymers were subsequently coated onto NaYF4:Yb3+,Er3+ UCNPs, and colloidal stability was evaluated in 1 × PBS, 10 × PBS, and other buffers. UCNP colloidal stability improved (up to 4 months) when coated with copolymers containing greater proportions of anchoring groups and higher phosphonate valences. Furthermore, small molecules could be conjugated to these overcoated UCNPs by use of copper-free click chemistry, as was done to demonstrate suitability for sensor and bioprobe development.


Asunto(s)
Nanopartículas , Organofosfonatos , Nanopartículas/química , Polietilenglicoles/química , Polímeros/química , Yoduro de Potasio
2.
Anal Chem ; 91(8): 5371-5379, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30915836

RESUMEN

The changing concentrations of circulating protein biomarkers have been correlated with a variety of diseases. Quantitative bioassays capable of sensitive and specific determination of protein biomarkers at low levels can be essential for therapeutic treatments that can improve outcomes for patients. Herein, we describe the investigation of a rotating paper device (RPD) for quantitative determination of targeted proteins at the fM concentration level. The RPD consists of two circular papers each separately supported with a plastic disc. Protein detection is conducted via enhanced immunoassay using amplification in a sequential workflow, which includes a sandwich immunoassay in the upper paper and a signal amplification reaction in the lower paper. The sandwich immunoassay is conducted using biobarcode nanoparticles (BNPs) and results in the release of reporter oligonucleotides from BNPs. These oligonucleotides are transferred to the bottom paper, where they engage in a target recycling methodology that leads to the production of a colorimetric signal. The assay was evaluated for quantitation of interleukin-6 (IL-6), a cytokine biomarker in serum. A limit of detection of 63 fM and a dynamic range of 200 fM-8 pM was observed for the assay. The specificity of the assay was successfully verified against several common protein biomarkers.


Asunto(s)
Inmunoensayo , Interleucina-6/sangre , Papel , Biomarcadores/sangre , Humanos , Nanopartículas/química , Oligonucleótidos/química , Tamaño de la Partícula , Propiedades de Superficie
3.
Analyst ; 144(4): 1223-1229, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30534674

RESUMEN

A paper-based platform was investigated in which the selective detection of oligonucleotide targets by hybridization was accomplished via the enhancement of fluorescence emission from intrinsically labeled DNA probes that were immobilized on the surface of quantum dots (QDs). Multiple copies of a derivative of thiazole orange, an intercalating dye known to form non-emissive dimers, were conjugated to single-stranded oligonucleotide probes. Dimerization resulted in the formation of H-aggregates where excitonic interactions led to the suppression of fluorescence. The hybridization of the oligonucleotide probe with a complementary target resulted in the enhancement of fluorescence emission as the dimers dissociated and the dyes preferentially intercalated with the duplex. The detection of oligonucleotide targets using this configuration eliminated the need for labeling the target strands, and fluorescence intensity was proportional to the extent of hybridization. In addition, the dye molecules were excited using Foerster Resonance Energy Transfer (FRET) from QD donors, which resulted in improved selectivity and allowed for ratiometric detection. A solution-phase hybridization assay based on similar operational principles has been previously reported, and this new work investigated the advantages offered for this transduction scheme using paper-based solid-phase substrates. QD-probe conjugates were immobilized in sufficient density on the paper matrix to provide for multiple-donor-multiple-acceptor interactions that resulted in a 20-fold enhancement of acceptor emission compared to the solution-based assay, providing a limit of detection of 0.1 pmol. The paper-based assay provided for the reduction of the time needed for sample preparation and data acquisition, demonstrated that transduction was possible in a complex matrix (goat serum) without compromising on the performance observed in buffer solution, and that oligonucleotides generated from standard PCR amplification could be detected.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Hibridación de Ácido Nucleico/métodos , Sondas de Oligonucleótidos/química , Oligonucleótidos/análisis , Papel , Puntos Cuánticos/química , Diseño de Equipo , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Sensibilidad y Especificidad
4.
Analyst ; 143(13): 3049-3058, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29808840

RESUMEN

Diagnostic technology that makes use of paper platforms in conjunction with the ubiquitous availability of digital cameras in cellular telephones and personal assistive devices offers opportunities for development of bioassays that are cost effective and widely distributed. Assays that operate effectively in aqueous solution require further development for implementation in paper substrates, overcoming issues associated with surface interactions on a matrix that offers a large surface-to-volume ratio and constraints on convective mixing. This report presents and compares two related methods for determination of oligonucleotides that serve as indicators of cystic fibrosis, differentiating between the normal wild-type sequence, and a mutant-type sequence that has a 3-base replacement. The transduction strategy operates by selective hybridization of oligonucleotide probes that are conjugated to fluorescent quantum dots, where hybridization of target sequences causes a molecular fluorophore to approach the quantum dot and become emissive through fluorescence resonance energy transfer. Detection can rely on hybridization of a target that is labelled with Cy3 fluorophore, or in the presence of an unlabelled target when a sandwich assay format is implemented with a labelled reporter oligonucleotide. Selectivity to determine the presence of mismatched sequences involves appropriate selection of nucleotide sequences to set melt temperatures, in conjunction with control of stringency conditions using formamide as a chaotrope. It was determined that both direct and sandwich assays on paper substrates are able to distinguish between wild-type and mutant-type samples.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/diagnóstico , Análisis Mutacional de ADN/métodos , Hibridación de Ácido Nucleico , Teléfono Inteligente , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Humanos , Mutación , Puntos Cuánticos
5.
Langmuir ; 33(45): 12839-12858, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-28759726

RESUMEN

Bioassays for the rapid detection and quantification of specific nucleic acids, proteins, and peptides are fundamental tools in many clinical settings. Traditional optical emission methods have focused on the use of molecular dyes as labels to track selective binding interactions and as probes that are sensitive to environmental changes. Such dyes can offer good detection limits based on brightness but typically have broad emission bands and suffer from time-dependent photobleaching. Inorganic nanoparticles such as quantum dots and upconversion nanoparticles are photostable over prolonged exposure to excitation radiation and tend to offer narrow emission bands, providing a greater opportunity for multiwavelength multiplexing. Importantly, in contrast to molecular dyes, nanoparticles offer substantial surface area and can serve as platforms to carry a large number of conjugated molecules. The surface chemistry of inorganic nanoparticles offers both challenges and opportunities for the control of solubility and functionality for selective molecular interactions by the assembly of coatings through coordination chemistry. This report reviews advances in the compositional design and methods of conjugation of inorganic quantum dots and upconversion nanoparticles and the assembly of combinations of nanoparticles to achieve energy exchange. Our interest is the exploration of configurations where the modified nanoparticles can be immobilized to solid substrates for the development of bioassays and biosensors that operate by resonance energy transfer (RET).


Asunto(s)
Nanopartículas , Bioensayo , Técnicas Biosensibles , Transferencia de Energía , Transferencia Resonante de Energía de Fluorescencia , Puntos Cuánticos
6.
Analyst ; 142(17): 3132-3135, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28765842

RESUMEN

The development of point-of-care bioassays for sensitive screening of protein-based cancer biomarkers would improve the opportunity for early stage diagnosis. A strategy for a fluorescence resonance energy transfer (FRET)-based bioassay has been investigated that makes use of modified cellulose paper for the detection of an epithelial cell adhesion molecule (EpCAM), which is a transmembrane glycoprotein that is overexpressed in several tumors of epithelial origin. The paper matrix was a substrate for immobilized aptamer-linked quantum dots (QDs-Apt) and Cy3 labeled complementary DNA (cDNA), which served as a donor and an acceptor, respectively. Competitive binding of EpCAM displaced the cDNA, resulting in the reduction of FRET. The paper-based bioassay was able to detect EpCAM in buffer solution as well as in 10% bovine serum solution using a reaction time of no more than 60 minutes. The dynamic range was 1-100 nM in buffer with a precision better than 4%, and the limit of detection was 250 pM in buffer and 600 pM in 10% serum.


Asunto(s)
Biomarcadores de Tumor/análisis , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Neoplasias/análisis , Puntos Cuánticos , Animales , Bovinos , Celulosa , Molécula de Adhesión Celular Epitelial/análisis , Humanos , Oligonucleótidos , Papel , Albúmina Sérica Bovina/análisis
7.
Anal Chem ; 88(6): 3186-93, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26866462

RESUMEN

Quantum dots (QDs) have been widely used in chemical and biosensing due to their unique photoelectrical properties and are well suited as donors in fluorescence resonance energy transfer (FRET). Selective hybridization interactions of oligonucleotides on QDs have been determined by FRET. Typically, the QD-FRET constructs have made use of labeled targets or have implemented labeled sandwich format assays to introduce dyes in proximity to the QDs for the FRET process. The intention of this new work is to explore a method to incorporate the acceptor dye into the probe molecule. Thiazole orange (TO) derivatives are fluorescent intercalating dyes that have been used for detection of double-stranded nucleic acids. One such dye system has been reported in which single-stranded oligonucleotide probes were doubly labeled with adjacent thiazole orange derivatives. In the absence of the fully complementary (FC) oligonucleotide target, the dyes form an H-aggregate, which results in quenching of fluorescence emission due to excitonic interactions between the dyes. The hybridization of the FC target to the probe provides for dissociation of the aggregate as the dyes intercalate into the double stranded duplex, resulting in increased fluorescence. This work reports investigation of the dependence of the ratiometric signal on the type of linkage used to conjugate the dyes to the probe, the location of the dye along the length of the probe, and the distance between adjacent dye molecules. The limit of detection for 34mer and 90mer targets was found to be identical and was 10 nM (2 pmol), similar to analogous QD-FRET using labeled oligonucleotide target. The detection system could discriminate a one base pair mismatch (1BPM) target and was functional without substantial compromise of the signal in 75% serum. The 1BPM was found to reduce background signal, indicating that the structure of the mismatch affected the environment of the intercalating dyes.


Asunto(s)
Colorantes Fluorescentes/química , Hibridación de Ácido Nucleico , Sondas de Oligonucleótidos/química , Puntos Cuánticos , Transferencia Resonante de Energía de Fluorescencia
8.
Langmuir ; 32(50): 13500-13509, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993027

RESUMEN

Oligonucleotide-coated nanoparticles (NPs) have been used in numerous applications such as bioassays, as intracellular probes, and for drug delivery. One challenge that is confronted in the preparation of oligonucleotide-NP conjugates is derived from surface charge because nanoparticles are often stabilized and made water-soluble with a coating of negatively charged capping ligands. Therefore, an electrostatic repulsion is present when attempting to conjugate oligonucleotides. The result is that the conjugation can be a slow process, sometimes requiring 1 to 2 days to equilibrate at the highest surface density. The effect is compounded by electrostatic repulsion between neighboring oligonucleotide strands on the NP surfaces, which tends to lower the surface density. Herein, we report a novel method that enables conjugation in less than 1 min with a surface density of oligonucleotides up to the theoretical physical limit of occupancy. Negatively charged NPs are first adsorbed onto the surface of positively charged magnetic beads (MBs) to create MB-NP conjugates. Oligonucleotides are subsequently electrostatically adsorbed onto the MB surfaces when added to a suspension of MB-NP conjugates. This creates an oligonucleotide concentration 105 to 106 greater than in bulk solution in the vicinity of the nanoparticles, resulting in the promotion of the kinetics by over 1000-fold and achieving the maximum density possible for the conjugation reaction.


Asunto(s)
Oro , Ácidos Nucleicos Inmovilizados/química , Nanopartículas del Metal , Oligonucleótidos/química , Puntos Cuánticos , Semiconductores
9.
Analyst ; 141(10): 2838-60, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27072364

RESUMEN

Point-of-care and in-field technologies for rapid, sensitive and selective detection of molecular biomarkers have attracted much interest. Rugged bioassay technology capable of fast detection of markers for pathogens and genetic diseases would in particular impact the quality of health care in the developing world, but would also make possible more extensive screening in developed countries to tackle problems such as those associated with water and food quality, and tracking of infectious organisms in hospitals and clinics. Literature trends indicate an increasing interest in the use of nanomaterials, and in particular luminescent nanoparticles, for assay development. These materials may offer attributes for development of assays and sensors that could achieve improvements in analytical figures of merit, and provide practical advantages in sensitivity and stability. There is opportunity for cost-efficiency and technical simplicity by implementation of luminescent nanomaterials as the basis for transduction technology, when combined with the use of paper substrates, and the ubiquitous availability of cell phone cameras and associated infrastructure for optical detection and transmission of results. Luminescent nanoparticles have been described for a broad range of bioanalytical targets including small molecules, oligonucleotides, peptides, proteins, saccharides and whole cells (e.g., cancer diagnostics). The luminescent nanomaterials that are described herein for paper-based bioassays include metal nanoparticles, quantum dots and lanthanide-doped nanocrystals. These nanomaterials often have broad and strong absorption and narrow emission bands that improve opportunity for multiplexed analysis, and can be designed to provide emission at wavelengths that are efficiently processed by conventional digital cameras. Luminescent nanoparticles can be embedded in paper substrates that are designed to direct fluid flow, and the resulting combination of technologies can offer competitive analytical performance at relatively low cost.


Asunto(s)
Bioensayo , Luminiscencia , Nanoestructuras , Elementos de la Serie de los Lantanoides , Nanopartículas del Metal , Papel , Puntos Cuánticos
10.
Anal Chem ; 87(2): 1297-305, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25513886

RESUMEN

The concentration of nanoparticles in solution is an important, yet challenging, parameter to quantify. In this work, a facile strategy for the determination of nanoparticle concentration is presented. The method relies on the quantitative analysis of the inherent distribution of nanoparticle-ligand conjugates that are generated when nanoparticles are functionalized with ligands. Validation of the method was accomplished by applying it to gold nanoparticles and semiconductor nanoparticles (CdSe/ZnS; core/shell). Poly(ethylene glycol) based ligands, with functional groups that quantitatively react with the nanoparticles, were incubated with the nanoparticles at varying equivalences. Agarose gel electrophoresis was subsequently used to separate and quantify the nanoparticle-ligand conjugates of varying valences. The distribution in the nanoparticle-ligand conjugates agreed well with that predicted by the Poisson model. A protocol was then developed, where a series of only eight different ligand amounts could provide an estimate of the nanoparticle concentration that spans 3 orders of magnitude (1 µM to 1 mM). For the gold nanoparticles and semiconductor nanoparticles, the measured concentrations were found to deviate by only 7% and 2%, respectively, from those determined by UV-vis spectroscopy. The precision of the assay was evaluated, resulting in a coefficient of variation of 5-7%. Finally, the protocol was used to determine the extinction coefficient of alloyed semiconductor nanoparticles (CdSxSe1-x/ZnS), for which a reliable estimate is currently unavailable, of three different emission wavelengths (525, 575, and 630 nm). The extinction coefficient of the nanoparticles of all emission wavelengths was similar and was found to be 2.1 × 10(5) M(-1)cm(-1).

11.
Langmuir ; 31(29): 8194-204, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26154687

RESUMEN

The energy transfer between quantum dots (QDs) and gold nanoparticles (AuNPs) represents a popular transduction scheme in analytical assays that use nanomaterials. The impact of the spatial arrangement of the two types of nanoparticles on analytical performance has now been evaluated using a nucleic acid strand displacement assay. The first spatial arrangement (configuration 1) involved the assembly of a number of monovalently functionalized QD-oligonucleotide conjugates around a single central AuNP that was functionalized with complementary oligonucleotide sequences. The assembly of these complexes, and subsequent disassembly via target oligonucleotide-mediated displacement, were used to evaluate energy transfer efficiencies. Furthermore, the inner filter effect of AuNPs on the fluorescence intensity of the QD was studied. AuNPs of three different diameters (6, 13, and 30 nm) were used in these studies. Configuration 2 was based on the placement of monovalently functionalized AuNP-oligonucleotide conjugates around a single QD that was functionalized with a complementary oligonucleotide. The optimal assay configuration, established by evaluating energy transfer efficiencies and inner filter effects, was obtained by arranging at most 15 QDs around the 13 nm AuNP (configuration 1). These assays provided a 2.5-fold change in fluorescence intensity in the presence of target oligonucleotides. To obtain the same response with configuration 2 required the placement of three 6 nm AuNPs around the QD. This resulted in configuration 2 having a 5-fold lower fluorescence intensity when compared to configuration 1. The use of low-cost detection systems (digital camera) further emphasized the higher analytical performance of configuration 1. Response curves obtained using these detection systems demonstrated that configuration 1 had a 10-fold higher sensitivity when compared to configuration 2. This study provides an important framework for the development of sensitive assays using gold nanoparticles and quantum dots.

12.
Anal Chem ; 86(21): 10932-9, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25293782

RESUMEN

Optical sensing can provide opportunity for simultaneous determination of multiple targets as well as for implementation of ratiometric methods that can improve accuracy and precision. Herein we report a paper-based two-color oligonucleotide detection assay with tunable sensitivity that is based on use of a single type of upconversion nanoparticle (UCNP). Water-soluble UCNPs were designed to concurrently offer green and red emission. These avidin functionalized UCNPs were adsorbed onto a cellulose support, and Cy3 was used as a green channel acceptor for Survival Motor Neuron (SMN1) target, and Cy5.5 was the red channel acceptor for the glucuronidase gene (uidA) target. Selective DNA hybridization of the labeled targets with the corresponding probe provided emission from dyes, which was the basis for concurrent quantification of both targets. The limit of detection (LOD) could be tuned by changing the relative ratio of the SMN1 and uidA probes. A higher proportion of a probe provided for a lower LOD. When the SMN1/uidA probe ratio was 1:4, the LOD for SMN1 and uidA target were 54.3 and 30.5 fmol, and when the probe ratio was 4:1, the LOD for the above targets were 22.1 and 1260 fmol, respectively. Selectivity evaluation showed that one base pair mismatched DNA for SMN1 and uidA could be discriminated in most cases. The assay showed resistance to nonspecific adsorption of interfering DNA and protein and was even functional for targets in undiluted serum. This work represents a significant step in the development of paper-based multiplexed UCNP luminescence assays.


Asunto(s)
Bioensayo , Color , Nanopartículas/química , Ácidos Nucleicos/análisis , Secuencia de Bases , Microscopía Electrónica de Transmisión , Oligonucleótidos , Reproducibilidad de los Resultados
13.
Anal Chem ; 86(20): 10331-9, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25225960

RESUMEN

Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an important framework for the integration of QD-FRET methods with digital imaging for a ratiometric transduction of nucleic acid hybridization on a paper-based platform.


Asunto(s)
Técnicas de Química Analítica/métodos , Hibridación de Ácido Nucleico , Papel , Puntos Cuánticos , Radiometría/instrumentación , Técnicas de Química Analítica/instrumentación , Fluorescencia , Polimorfismo de Nucleótido Simple , Relación Señal-Ruido
14.
Anal Chem ; 86(5): 2719-26, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24506311

RESUMEN

A bioassay based on DNA hybridization on cellulose paper is a promising format for gene fragment detection that may be suited for in-field and rapid diagnostic applications. We demonstrate for the first time that luminescence resonance energy transfer (LRET) associated with upconverting phosphors (UCPs) can be used to develop a paper-based DNA hybridization assay with high sensitivity, selectivity and fast response. UCPs with strong green emission were synthesized and subsequently functionalized with streptavidin (UCP-strep). UCP-strep particles were immobilized on cellulose paper, and then biotinylated single-stranded oligonucleotide probes were conjugated onto the UCPs via streptavidin-biotin linkage. The UCPs served as donors that were LRET-paired with Cy3-labeled target DNA. Selective DNA hybridization enabled the proximity required for LRET-sensitized emission from Cy3, which was used as the detection signal. Hybridization was complete within 2 min, and the limit of detection of the method was 34 fmol, which is a significant improvement in comparison to an analogous fluorescence resonance energy transfer (FRET) assay based on quantum dots. The assay exhibited excellent resistance to nonspecific adsorption of noncomplementary short/long DNA and protein. The selectivity of the assay was further evaluated by one base pair mismatched (1BPM) DNA detection, where a maximum signal ratio of 3.1:1 was achieved between fully complementary and 1BPM samples. This work represents a preliminary but significant step for the development of paper-based UCP-LRET nucleic acid hybridization assays, which offer potential for lowering the limit of detection of luminescent hybridization assays due to the negligible background signal associated with optical excitation by near-infrared (NIR) light.

15.
Bioconjug Chem ; 25(7): 1342-50, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24927235

RESUMEN

Control of the valency that is achieved in the decoration of quantum dots (QDs) remains a challenge due to the high surface area of nanoparticles. A population distribution of conjugates is formed even when reactions involve use of one-to-one molar equivalents of the ligand and QD. Monovalent conjugates are of particular interest to enable the preparation of multinanoparticle constructs that afford improved analytical functionality. Herein, a facile method for the formation and purification of QD-DNA monoconjugates (i.e., 1 DNA per QD) is described. Using diethylaminoethyl (DEAE) functionalized magnetic beads, a protocol was developed and optimized to selectively isolate QD-DNA monoconjugates from a mixture. Monoconjugates prepared with oligonucleotides as short as 19 bases and as long as 36 bases were successfully isolated. The monoconjugates were isolated in less than 5 min with isolation efficiencies between 68% and 93%, depending on the length of oligonucleotide that was used. The versatility of the method was demonstrated by purifying monoconjugates prepared from commercially available, water-soluble QDs. The isolation of monoconjugates was confirmed using agarose gel electrophoresis and single molecule fluorescence spectroscopy. Examples are provided comparing the analytical performance of monoconjugates to collections of nanoparticles of mixed valencies, indicating the significance of this separation method to prepare nanomaterials for bioassay design.


Asunto(s)
ADN/química , ADN/aislamiento & purificación , Electroforesis en Gel de Agar/métodos , Fenómenos Magnéticos , Polímeros/química , Puntos Cuánticos/química , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Polímeros/aislamiento & purificación , Polímeros/metabolismo , Puntos Cuánticos/metabolismo , Espectrometría de Fluorescencia
16.
Sensors (Basel) ; 14(9): 16829-55, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25211198

RESUMEN

Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies.


Asunto(s)
Bioensayo/instrumentación , Técnicas Biosensibles/instrumentación , Mediciones Luminiscentes/instrumentación , Imagen Molecular/instrumentación , Nanopartículas/química , Puntos Cuánticos , Semiconductores , Diseño de Equipo , Análisis de Falla de Equipo , Nanopartículas/ultraestructura , Nanotecnología/instrumentación , Integración de Sistemas
17.
Artículo en Inglés | MEDLINE | ID: mdl-38958411

RESUMEN

Upconversion nanoparticles (UCNPs) are materials that provide unique advantages for biomedical applications. There are constantly emerging customized UCNPs with varying compositions, coatings, and upconversion mechanisms. Cellular uptake is a key parameter for the biological application of UCNPs. Uptake experiments have yielded highly varying results, and correlating trends between cellular uptake with different types of UCNP coatings remains challenging. In this report, the impact of surface polymer coatings on the formation of protein coronas and subsequent cellular uptake of UCNPs by macrophages and cancer cells was investigated. Luminescence confocal microscopy and elemental analysis techniques were used to evaluate the different coatings for internalization within cells. Pathway inhibitors were used to unravel the specific internalization mechanisms of polymer-coated UCNPs. Coatings were chosen as the most promising for colloidal stability, conjugation chemistry, and biomedical applications. PIMA-PEG (poly(isobutylene-alt-maleic) anhydride with polyethylene glycol)-coated UCNPs were found to have low cytotoxicity, low uptake by macrophages (when compared with PEI, poly(ethylenimine)), and sufficient uptake by tumor cells for surface-loaded drug delivery applications. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) studies revealed that PIMA-coated NPs were preferentially internalized by the clathrin- and caveolar-independent pathways, with a preference for clathrin-mediated uptake at longer time points. PMAO-PEG (poly(maleic anhydride-alt-1-octadecene) with polyethylene glycol)-coated UCNPs were internalized by energy-dependent pathways, while PAA- (poly(acrylic acid)) and PEI-coated NPs were internalized by multifactorial mechanisms of internalization. The results indicate that copolymers of PIMA-PEG coatings on UCNPs were well suited for the next-generation of biomedical applications.

18.
Anal Chem ; 85(15): 7502-11, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23837820

RESUMEN

A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Hibridación de Ácido Nucleico/métodos , Papel , Puntos Cuánticos , Adsorción , Secuencia de Bases , Color , Modelos Moleculares , Conformación de Ácido Nucleico , Oligonucleótidos/química , Oligonucleótidos/genética , Polimorfismo de Nucleótido Simple
19.
Anal Chem ; 85(3): 1860-7, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23272728

RESUMEN

A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.


Asunto(s)
Carbocianinas/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Puntos Cuánticos/química , Cromatografía en Papel/métodos , Hibridación de Ácido Nucleico/métodos , Polimorfismo de Nucleótido Simple/genética
20.
Langmuir ; 29(3): 977-87, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23298406

RESUMEN

Methods have been developed for the solid-phase detection of nucleic acids using mixed films of quantum dots (QDs) and oligonucleotide probes in microtiter plates. Polystyrene microwells were functionalized with multidentate imidazole ligands to immobilize QDs. Oligonucleotide hybridization was transduced using QDs as donors in fluorescence resonance energy transfer (FRET). One detection channel paired green-emitting QD donors with Cy3 acceptors and served as an internal standard. A second detection channel paired red-emitting QDs with Alexa Fluor 647 acceptors and served as the primary detection channel. A selective assay for multiple targets was demonstrated using a 96-well plate format, which combined the advantages of two-plex QD-FRET with the high-throughput capability and convenience of microtiter plates. The assay had excellent resistance to the nonspecific adsorption of DNA and discriminated between fully complementary and single base-pair mismatched sequences with a contrast ratio >2. Under optimal conditions for a single color (green QD) assay format, the limit of detection (LOD) was 4 nM, and the dynamic range was from 20 to 300 nM. In a two-color assay, the detection channel (red QD) exhibited linear response between 4 and 100 nM and a LOD of 4 nM.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/instrumentación , Transferencia Resonante de Energía de Fluorescencia/métodos , Análisis por Micromatrices/instrumentación , Ácidos Nucleicos/análisis , Sondas de Oligonucleótidos/química , Puntos Cuánticos , Carbocianinas/química , Imidazoles/química , Ligandos , Hibridación de Ácido Nucleico , Poliestirenos/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda