Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Chem Chem Phys ; 13(10): 4372-80, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21258686

RESUMEN

It is shown that the temperature dependence of the DNP enhancement of the NMR signal from water protons at 3.4 T using TEMPOL as a polarising agent can be obtained provided that the nuclear relaxation, T(1I), is sufficiently fast and the resolution sufficient to measure the (1)H NMR shift. For high radical concentrations (∼100 mM) the leakage factor is approximately 1 and, provided sufficient microwave power is available, the saturation factor is also approximately 1. In this situation the DNP enhancement is solely a product of the ratio of the electron and nuclear gyromagnetic ratios and the coupling factor enabling the latter to be directly determined. Although the use of high microwave power levels needed to ensure saturation causes rapid heating of the sample, this does not prevent maximum DNP enhancements, ε(0), being obtained since T(1I) is very much less than the characteristic heating time at these concentrations. It is necessary, however, to know the temperature variation of T(1I) to allow accurate modelling of the behaviour. The DNP enhancement is found to vary linearly with temperature with ε(0)(T) = -2 ± 2 - (1.35 ± 0.02)T for 6 °C ≤ T ≤ 100 °C. The value determined for the coupling factor, 0.055 ± 0.003 at 25 °C, agrees very well with the molecular dynamics simulations of Sezer et al. (Phys. Chem. Chem. Phys., 2009, 11, 6626) who calculated 0.0534, however the experimental values increase much more rapidly with increasing temperature than predicted by these simulations. Large DNP enhancements (|ε(0)| > 100) are reported at high temperatures but it is also shown that significant enhancements (e.g.∼40) can be achieved whilst maintaining the sample temperature at 40 °C by adjusting the microwave power and irradiation time. In addition, short polarisation times enable rapid data acquisition which permits further enhancement of the signal, such that useful liquid state DNP-NMR experiments could be carried out on very small samples.

2.
Phys Chem Chem Phys ; 12(22): 5757-65, 2010 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-20442952

RESUMEN

DNP enhanced (1)H NMR at 143 MHz in toluene is investigated using an NMR spectrometer coupled with a modified EPR spectrometer operating at 94 GHz and TEMPOL as the polarisation agent. A 100 W microwave amplifier was incorporated into the output stage of the EPR instrument so that high microwave powers could be delivered to the probe in either CW or pulsed mode. The maximum enhancement for the ring protons increases from approximately -16 for a 5 mM TEMPOL solution to approximately -50 for a 20 mM solution at a microwave power of approximately 480 mW. The temperature dependence of the enhancement, the NMR relaxation rates and the ESR spectrum of TEMPOL were also studied in an effort to obtain information on the dynamics of the system.

3.
J Magn Reson ; 215: 1-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22218011

RESUMEN

A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Algoritmos , Bacteriorodopsinas/química , Óxidos N-Cíclicos/química , Campos Electromagnéticos , Diseño de Equipo , Glucosa/química , Glicina/química , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética/instrumentación , Microondas , Distribución Normal , Politetrafluoroetileno , Propanoles/química , Ondas de Radio , Temperatura , Urea/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda