RESUMEN
Hot springs are inhabited by specific microbial communities which are reservoirs of novel taxa. In this work strain 4228-RoLT was isolated from the Solnechny hot spring, Uzon Caldera, Kamchatka. Cells of the strain 4228-RoLT were Gram-negative rods forming multicellular filaments. The strain grew optimally at 60 °C and pH 7.0 and fermented various organic compounds including polysaccharides (microcrystalline cellulose, xylan, chitin, starch, dextrin, dextran, beta-glucan, galactomannan, glucomannan, mannan). Major fatty acids were iso-C17:0, C16:0, C18:0, C20:0, iso-C19:0, anteiso-C17:0 and C22:0. Genome of the strain was of 3.25 Mbp with GC content of 54.2%. Based on the whole genome comparisons and phylogenomic analysis the new isolate was affiliated to a novel species of Thermanaerothrix genus within Anaerolineae class of phylum Chloroflexota, for which the name T. solaris sp. nov. was proposed with 4228-RoLT (= VKM B-3776 T = UQM 41594 T = BIM B-2058 T) as the type strain. 114 CAZymes including 43 glycoside hydrolases were found to be encoded in the genome of strain 4228-RoLT. Cell-bound and extracellular enzymes of strain 4228-RoLT were active against starch, dextran, mannan, xylan and various kinds of celluloses, with the highest activity against beta-glucan. Altogether, growth experiments, enzymatic activities determination and genomic analysis suggested that T. solaris strain 4228-RoLT could serve as a source of glycosidases suitable for plant biomass hydrolysis.
Asunto(s)
Composición de Base , Manantiales de Aguas Termales , Filogenia , Manantiales de Aguas Termales/microbiología , Hidrólisis , Genoma Bacteriano , Ácidos Grasos/metabolismo , ARN Ribosómico 16S/genética , Polisacáridos/metabolismo , ADN Bacteriano/genética , Técnicas de Tipificación BacterianaRESUMEN
The Calvin-Benson-Bassham (CBB) cycle assimilates CO2 for the primary production of organic matter in all plants and algae, as well as in some autotrophic bacteria. The key enzyme of the CBB cycle, ribulose-bisphosphate carboxylase/oxygenase (RubisCO), is a main determinant of de novo organic matter production on Earth. Of the three carboxylating forms of RubisCO, forms I and II participate in autotrophy, and form III so far has been associated only with nucleotide and nucleoside metabolism. Here, we report that form III RubisCO functions in the CBB cycle in the thermophilic chemolithoautotrophic bacterium Thermodesulfobium acidiphilum, a phylum-level lineage representative. We further show that autotrophic CO2 fixation in T. acidiphilum is accomplished via the transaldolase variant of the CBB cycle, which has not been previously demonstrated experimentally and has been considered unlikely to occur. Thus, this work reveals a distinct form of the key pathway of CO2 fixation.
Asunto(s)
Procesos Autotróficos , Proteínas Bacterianas/metabolismo , Firmicutes/enzimología , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Redes y Vías MetabólicasRESUMEN
A haloalkaliphilic hydrolytic actinobacterium, strain ACPA22T, was enriched and isolated in pure culture from saline alkaline soil (soda solonchak) in northeastern Mongolia. The isolate was facultatively alkaliphilic, growing at pH 6.5-10.5 (optimum at 7.3-9.0) and highly salt-tolerant, tolerating up to 3 M total Na+ as carbonates. The hydrolytic nature of ACPA22T was confirmed by two different growth-dependent methods and by the presence of multiple glycosidase-encoding genes in the genome. The 16S rRNA gene-based phylogenetic analysis demonstrated that strain ACPA22T formed a deep-branching lineage within the family Glycomycetaceae, with the highest sequence similarity value to Glycomyces buryatensis 18T (92.1â%) and Salininema proteolyticum Miq-4T (91.8â%). The average amino acid identity values (56.1-61.5â%) between ACPA22T and other Glycomycetaceae members with available genomes did not exceed the threshold reported for different genera. The cell wall of ACPA22T contained meso-diaminopimelic acid, glycine, glutamic acid and alanine in a molar ratio, characteristic of the peptidoglycan type A1γ'. The whole-cell sugars included mannose, galactose, arabinose, ribose and xylose. The major menaquinones were MK-10(Ð4) and MK-11(Ð4). The identified polar lipids were represented by phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. In addition, the strain had a few unidentified characteristic polar lipids, including an amine-containing phospholipid with chromatographic mobility similar to that of phosphatidylinositol. The polar lipid fatty acids were dominated by anteiso-C17â:â0 and iso-C16â:â0. The genome included a chromosome of 3.94 Mbp (G+C content 61.5 mol%) encoding 3285 proteins and two plasmids of 59.8 and 14.8 kBp. Based on the data obtained in this study, a new genus and species, Natronoglycomyces albus gen. nov., sp. nov, is proposed with the type strain ACPA22T (=DSM 106290T=VKM Ac-2771T).
Asunto(s)
Actinobacteria/clasificación , Filogenia , Microbiología del Suelo , Actinobacteria/aislamiento & purificación , Álcalis , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Mongolia , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/química , Vitamina K 2/químicaRESUMEN
Heterologous endo-xanthanase (EX) from the thermophilic planktomycete Thermogutta terrifontis strain was obtained using Penicillium verruculosum 537 (ΔniaD) expression system with the cellobiohydrolase 1 gene promoter. Homogeneous EX with a molecular weight of 23.7 kDa (pI 6.5) was isolated using liquid chromatography methods. This xanthan degrading enzyme also possesses the enzymatic activity towards CM-cellulose, ß-glucan, curdlan, lichenan, laminarin, galactomannan, xyloglucan but not towards p-nitrophenyl derivatives of ß-D-glucose, mannose and cellobiose. The temperature and pH optima of EX were 55°C and 4.0, respectively; the enzyme exhibited 90% of its maximum activity in the temperature range 50-60°C and pH 3-5.
Asunto(s)
Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Planctomycetales/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Celulosa/metabolismo , Clonación Molecular , Galactosa/análogos & derivados , Glucanos/metabolismo , Glicósido Hidrolasas/aislamiento & purificación , Calor , Concentración de Iones de Hidrógeno , Mananos/metabolismo , Planctomicetos , Especificidad por Sustrato , Talaromyces/genética , Xilanos/metabolismo , beta-Glucanos/metabolismoRESUMEN
An obligately alkaliphilic, anaerobic, proteolytic bacterium was isolated from a sample of Tanatar III soda lake sediment (Altai region, Russia) and designated as strain Z-1701T. Cells of strain Z-1701T were short, straight, motile Gram-stain-positive rods. Growth of Z-1701T obligately depended on the presence of sodium carbonate. Strain Z-1701T could utilize various peptides mixtures, such as beef and yeast extracts, peptone, soytone, trypticase and tryptone, as well as such proteins as albumin, gelatin and sodium caseinate. It was able to grow oligotrophically with 0.02 g l-1 yeast extract as the sole energy and carbon source. Carbohydrates did not support the growth of strain Z-1701T. The main products released during the growth of strain Z-1701T on tryptone were formate, acetate and ammonium. Strain Z-1701T was able to reduce ferrihydrite, Fe(III)-EDTA, anthraquinone-2,6-disulfonate and elemental sulfur, using proteinaceous substrates as electron donors. In all cases the presence of the electron acceptor in the medium stimulated growth. The main cellular fatty acids were iso-C15â:â0, iso-C15â:â0 aldehyde, iso-C15â:â1 ω6, C16â:â0, iso-C17â:â0 aldehyde, C16â:â0 aldehyde and C14â:â0. The DNA G+C content of the isolate was 43.9 mol%. Phylogenetic analysis based on the concatenated alignment of 120 protein-marker sequences revealed that strain Z-1701T falls into a cluster with the genus Tindallia, family Clostridiaceae. 16S rRNA gene sequence identity between strain Z-1701T and Tindallia species were 88.3-89.75â%. On the basis of its phenotypic characteristics and phylogenetic position, the novel isolate is considered to be a representative of a novel genus and species for which the name Isachenkonia alkalipeptolytica gen. nov., sp. nov. is proposed, with Z-1701T (=JCM 32929Т=DSM 109060Т=VKM B-3261Т) as its type strain.
Asunto(s)
Bacterias Anaerobias/clasificación , Compuestos Férricos/metabolismo , Lagos/microbiología , Filogenia , Bacterias Reductoras del Azufre/clasificación , Álcalis , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Bacilos Grampositivos/clasificación , Bacilos Grampositivos/aislamiento & purificación , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN , Azufre/metabolismo , Bacterias Reductoras del Azufre/aislamiento & purificaciónRESUMEN
A moderately thermophilic, neutrophilic, aerobic, Gram-negative bacterium, strain 3729kT, was isolated from a thermal spring of the Chukotka Peninsula, Arctic region, Russia. It grew chemoorganoheterotrophically, utilizing proteinaceous substrates, including highly rigid keratins as well as various polysaccharides (glucomannan, locust bean gum, gum guar and xanthan gum). The major fatty acids of strain 3729kT were iso-C15â:â0 (60.9%), iso-C17â:â0 (12.0%), C16â:â0 (9.9%) and iso-C16â:â0 (7.4%). Isoprenoid quinones were Q-8 (95%) and Q-9 (5%). The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine and three unidentified polar lipids. Strain 3729kT was inhibited by chloramphenicol, neomycin, novobiocin, kanamycin, tetracycline, ampicillin and polymyxin B, but resistant to rifampicin, vancomycin and streptomycin. At the same time, strain 3729kT inhibited growth of Micrococcus luteus and its genome possessed genes for antimicrobial activity against Gram-positive bacteria (a single putative bacteriocin and several secreted lysozymes and peptidoglycan lytic transglycosylases). The DNA G+C content was 69.8 mol%. 16S rRNA gene sequence-based phylogenetic analysis placed strain 3729kT into a distinct species/genus-level branch within the family Xanthomonadaceae (Proteobacteria). Phylogenetic analysis of 120 conservative protein sequences of all Xanthomonadaceae with validly published names and publicly available genomic sequences supported a species-level position of strain 3729kT within the genus Arenimonas. Pairwise ANI values between strain 3729kT and other Arenimonas species were of 75-80â%, supporting the proposal of a novel species. Accordingly, Arenimonas fontis sp. nov., with the type strain 3729kT (=VMK Ð-3232Т=DSM 105847T), was proposed.
Asunto(s)
Manantiales de Aguas Termales/microbiología , Filogenia , Xanthomonadaceae/clasificación , Regiones Árticas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Xanthomonadaceae/aislamiento & purificaciónRESUMEN
A novel aerobic moderately thermophilic bacterium, strain 3753OT, was isolated from a Chukotka hot spring (Arctic, Russia) using the newly developed technology of laser engineering of microbial systems. Сells were regular short rods, 0.4×0.8-2.0 µm in size, with a monoderm-type envelope and a single flagellum. The temperature and pH ranges for growth were 42-60 °C and pH 6.5-8.5, the optima being 50-54 °C and pH 7.3. Strain 3753OT grew chemoorganoheterotrophically on a number of carbohydrates or peptidic substrates and volatile fatty acids, and chemolithoautotrophically with siderite (FeCO3) as the electron donor. The major cellular fatty acid was branched C19â:â0. Phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids as well as two yellow carotenoid-type pigments were detected in the polar lipid extract. Strain 3753OT was inhibited by chloramphenicol, polymyxin B, vancomycin, streptomycin, neomycin and kanamycin, but resistant to the action of novobiocin and ampicillin. The DNA G+C content was 69.9 mol%. The 16S rRNA gene as well as 51 conservative protein sequence-based phylogenetic analyses placed strain 3753OT within the previously uncultivated lineage OLB14 in the phylum Chloroflexi. Taking into account the phylogenetic position as well as phenotypic properties of the novel isolate, the novel genus and species Tepidiforma bonchosmolovskayae gen. nov., sp. nov., within the Tepidiformaceae fam. nov., the Tepidiformales ord. nov. and the Tepidiformia classis nov. are proposed. The type strain of Tepidiforma bonchosmolovskayae is 3753OT (=VKM B-3389T=KTCT 72284T).
Asunto(s)
Chloroflexi/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Regiones Árticas , Técnicas de Tipificación Bacteriana , Composición de Base , Carotenoides/química , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADNRESUMEN
The genus Mesotoga, the only described mesophilic Thermotogae lineage, is common in mesothermic anaerobic hydrocarbon-rich environments. Besides mesophily, Mesotoga displays lineage-specific phenotypes, such as no or little H2 production and dependence on sulfur-compound reduction, which may influence its ecological role. We used comparative genomics of 18 Mesotoga strains (pairwise 16S rRNA identity >99%) and a transcriptome of M. prima to investigate how life at moderate temperatures affects phylogeography and to interrogate the genomic features of its lineage-specific metabolism. We propose that Mesotoga accomplish H2 oxidation and thiosulfate reduction using a sulfide dehydrogenase and a hydrogenase-complex and that a pyruvate:ferredoxin oxidoreductase acquired from Clostridia is responsible for oxidizing acetate. Phylogenetic analysis revealed three distinct Mesotoga lineages (89.6%-99.9% average nucleotide identity [ANI] within lineages, 79.3%-87.6% ANI between lineages) having different geographic distribution patterns and high levels of intra-lineage recombination but little geneflow between lineages. Including data from metagenomes, phylogeographic patterns suggest that geographical separation historically has been more important for Mesotoga than hyperthermophilic Thermotoga and we hypothesize that distribution of Mesotoga is constrained by their anaerobic lifestyle. Our data also suggest that recent anthropogenic activities and environments (e.g., wastewater treatment, oil exploration) have expanded Mesotoga habitats and dispersal capabilities.
Asunto(s)
Bacterias/genética , Genoma Bacteriano/genética , Filogeografía , Acetatos/metabolismo , Anaerobiosis , Bacterias/clasificación , Bacterias/aislamiento & purificación , Ecosistema , Genómica , Hidrógeno/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Filogenia , Piruvato-Sintasa/genética , ARN Ribosómico 16S/genética , Tiosulfatos/metabolismo , Xilosa/metabolismoRESUMEN
A novel aerobic bacterium, designated as strain GM2012T, was isolated from a microbial mat proliferating under the flow of thermal water dissipating from the wall of a 4000 m deep mine in South Africa. The cells were non-motile cocci, capable of budding, occurred in single or gathered in aggregates. The organism is a strictly aerobic chemoorganoheterotroph, preferring simple sugars and polysaccharides as growth substrates. The optimal growth occurred at 42 °C and pH 7.5-7.7. The predominant fatty acids were palmitate, stearate and oleate. The G+C content of the DNA was 70.1âmol%. The 16S rRNA gene sequence analysis placed strain GM2012T within the family Isosphaeraceae of the order Planctomycetales with 88-89â% sequence identity to Isosphaera pallida, Aquisphaeragiovannonii, Singulisphaera acidiphila, Paludisphaera borealis and Tundrisphaera lichenicola type strains. Based on the genotypic and phenotypic distinctive features of the new strain, we propose a novel genus and species Tautonia sociabilis gen. nov., sp. nov. with the type strain GM2012T (=VKM B-2860,=KCTC 72013).
Asunto(s)
Agua Subterránea/microbiología , Filogenia , Planctomycetales/clasificación , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Minería , Planctomycetales/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , SudáfricaRESUMEN
An extremely halophilic euryarchaeon, strain HArcel1T, was enriched and isolated in pure culture from the surface brines and sediments of hypersaline athalassic lakes in the Kulunda Steppe (Altai region, Russia) using amorphous cellulose as the growth substrate. The colonies of HArcel1T are pale-orange, and form large zones of cellulose hydrolysis around them. The cells are non-motile cocci of variable size with a thin monolayer cell wall. The isolate is an obligate aerobic heterotroph capable of growth with only three substrates: various forms of insoluble cellulose, xylan and cellobiose. Strain HArcel1T is an extremely halophilic neutrophile, growing within the salinity range from 2.5 to 5 M NaCl (optimum at 3.5-4 M). The core archaeal lipids are dominated by C20-C20 and C25-C20 dialkyl glycerol ethers, in approximately 6:1 proportion. The 16S rRNA and rpoB' gene analysis indicated that HArcel1T forms a separate lineage within the family Haloarculaceae, order Halobacteriales, with the genera Halorhabdus and Halopricus as closest relatives. On the basis of the unique phenotypic properties and distinct phylogeny of the 16S rRNA and rpoB' genes, it is suggested that strain HArcel1T is classified into a new genus and species Halococcoides cellulosivorans gen. nov., sp. nov. (JCM 31941T=UNIQEM U975T).
Asunto(s)
Sedimentos Geológicos/microbiología , Halobacteriales/clasificación , Lagos/microbiología , Filogenia , Sales (Química) , Celulosa , ADN de Archaea/genética , Ácidos Grasos/química , Genes Arqueales , Halobacteriales/aislamiento & purificación , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADNRESUMEN
Brine samples from Kulunda Steppe soda lakes (Altai, Russia) were inoculated into a hypersaline alkaline mineral medium with ß-keratin (chicken feather) as a substrate. The micro-organisms dominating the enrichment culture were isolated by limiting serial dilution on the same medium with casein as a substrate. The cells of strain BSker1T were motile, curved rods. The strain was an obligately aerobic heterotroph utilizing proteins and peptides as growth substrates. The isolate was an obligate alkaliphile with a pH range for growth from pH 8.5 to 10.25 (optimum at pH 9.5), and it was extremely salt tolerant, growing with between 1 and 4.5 M total Na+ (optimally at 2-2.5 M). BSker1T had a unique composition of polar lipid fatty acids, dominated by two C17 species. The membrane polar lipids included multiple unidentified phospholipids and two aminolipids. According to phylogenetic analysis of the 16S rRNA gene sequence, the isolate forms a novel branch within the family Ectothiorhodospiraceae (class Gammaproteobacteria) with the highest sequence similarity to the members of this family being 91â%. On the basis of distinct phenotypic and genotypic properties, strain BSker1T (=JCM 31341T=UNIQEM U1008T) is proposed to be classified as a representative of a novel genus and species, Natronospira proteinivora gen. nov., sp. nov.
Asunto(s)
Álcalis , Ectothiorhodospiraceae/clasificación , Filogenia , Salinidad , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ectothiorhodospiraceae/genética , Ectothiorhodospiraceae/aislamiento & purificación , Ácidos Grasos/química , Lagos/microbiología , Fosfolípidos/química , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADNRESUMEN
Two proteolytic bacterial strains, BSker2T and BSker3T, were enriched from sediments of hypersaline alkaline lakes in Kulunda Steppe (Altai, Russia) with chicken feathers as substrate, followed by pure culture isolation on hypersaline alkaline media with casein. The cells were non-motile, filamentous, flexible rods. The isolates were obligately aerobic heterotrophs utilizing proteins and peptides as growth substrates. Both were obligate alkaliphiles, but differed in their pH optimum for growth: pH 9.5-9.8 for Bsker2T and pH 8.5-8.8 for BSker3T. The salt range for growth of both isolates was between 2 and 4.5 M total Na+ with an optimum at 2.5-3 M. No organic osmolytes were detected in cells of BSker2T, but they accumulated high intracellular concentrations of K+. The polar lipid fatty acids were dominated by unsaturated C16 and C18 species. The 16S rRNA gene phylogeny indicated that both strains belong to the recently proposed phylum Rhodothermaeota. BSker2T forms a novel genus-level branch, while BSker3T represents a novel species-level member in the genus Longimonas. On the basis of distinct phenotypic and genotypic properties, strain BSker2T (=JCM 31342T=UNIQEM U1009T) is proposed to be classified as a representative of a novel genus and species, Natronotalea proteinilyticagen. nov., sp. nov., and strain BSker3T (=JCM 31343T=UNIQEM U1010T) as a representative of a novel species, Longimonas haloalkaliphila sp. nov.
Asunto(s)
Álcalis , Bacteroidetes/clasificación , Lagos/microbiología , Filogenia , Salinidad , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADNRESUMEN
A novel strictly anaerobic, thermotolerant, moderately halophilic, organotrophic bacterium, strain MRo-4T, was isolated from a sample of a microbial mat, developed under the flow of subsurface water in TauTona gold mine, South Africa. Cells of the novel isolate stained Gram-positive and were motile, spore-forming rods, 0.2-0.3 µm in width and 5-20 µm in length. Strain MRo-4T grew at 25-50 °C, at pH 7.0-8.8 and at an NaCl concentration of 5-100 g l-1. The isolate was able to ferment yeast extract, peptone and mono-, oligo- and polysaccharides, including cellulose and chitin. Elemental sulfur, thiosulfate, sulfate, sulfite, nitrate, nitrite, fumarate and arsenate were not reduced. The major fatty acids were iso-C15â:â0, iso-C15â:â0 dimethyl acetyl and anteiso-C15â:â0. The G+C content of the DNA was 32.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences of strain MRo-4T and its nearest relatives showed its affiliation to the genus Sporosalibacterium. Sporosalibacteriumfaouarense SOL3f37T, the only valid published representative of the genus, appeared to be its closest relative (96.8â% 16S rRNA gene sequence similarity). However, strains MRo-4T and S. faouarense SOL3f37T differed in temperature, pH and salinity ranges for growth, requirement for yeast extract and substrate profiles. Based on the phylogenetic analysis and physiological properties of the novel isolate, we propose a novel species, Sporosalibacterium tautonense sp. nov. The type strain is MRo-4T (=DSM 28179T=VKM B-2948T).
Asunto(s)
Clostridiales/clasificación , Minería , Filogenia , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/genética , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Oro , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , SudáfricaRESUMEN
An obligately anaerobic, sulfate-reducing micro-organism, strain 3127-1T, was isolated from geothermally heated soil (Oil Site, Uzon Caldera, Kamchatka, Russia). The new isolate was a moderately thermoacidophilic anaerobe able to grow with H2 or formate by respiration of sulfate or thiosulfate. The pH range for growth was 3.7-6.5, with an optimum at 4.8-5.0. The temperature range for growth was 37-65 °C, with an optimum at 55 °C. The G+C content of the genomic DNA was 33.7 mol%. The genome of strain 3127-1T contained two almost identical 16S rRNA genes, differing by a single nucleotide substitution. The closest 16S rRNA gene sequence of a validly published species belonged to Thermodesulfobium narugense Na82T (99.5â% similarity). However, the average nucleotide identity of the genomes of strain 3127-1T and T. narugense Na82T and the predicted DNA-DNA hybridization value (GGDC 2.1 blast+, formula 2) were as low as 86 and 32.5±2.5â%, respectively. This, together with phenotypic data, showed the new isolate to belong to a novel species, for which the name Thermodesulfobium acidiphilum sp. nov. is proposed. The type strain is 3127-1T (=DSM 102892T=VKM B-3043T).
Asunto(s)
Firmicutes/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Firmicutes/genética , Firmicutes/aislamiento & purificación , Hibridación de Ácido Nucleico , Oxidación-Reducción , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADNRESUMEN
A moderately thermophilic, anaerobic bacterium designated as strain KRT was isolated from a shallow-water submarine hydrothermal vent (Kunashir Island, Southern Kurils, Russia). Cells of strain KRT were thin (0.2-0.3 µm), flexible, motile, Gram-stain-negative rods of variable length. Optimal growth conditions were pH 6.6, 55 °C and 1-3â% (w/v) NaCl. Strain KRT was able to ferment a wide range of proteinaceous substrates, pyruvate, and mono-, di- and polysaccharides. The best growth occurred with proteinaceous compounds. Nitrate significantly stimulated the growth on proteinaceous substrates decreasing H2 formation, ammonium being the main product of nitrate reduction. Strain KRT did not need the presence of a reducing agent in the medium and tolerated the presence of oxygen in the gas phase up to 3â% (v/v). In the presence of nitrate, aerotolerance of isolate KRT was enhanced up to 6-8â% O2 (v/v). Strain KRT was able to grow chemolithoheterotrophically, oxidizing H2 and reducing nitrate to ammonium. Yeast extract (0.05 g l-1) was required for growth. The G+C content of the genomic DNA of strain KRT was 47.3 mol%. 16S rRNA gene sequence analysis placed isolate KRT in the phylum Calditrichaeota where it represented a novel species of a new genus, for which the name Calorithrix insularis gen. nov., sp. nov. is proposed. The type strain of Calorithrix insularis is KRT (=DSM 101605T=VKM B-3022T).
Asunto(s)
Bacterias Anaerobias/clasificación , Respiraderos Hidrotermales/microbiología , Filogenia , Bacterias Anaerobias/genética , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Bacterias Gramnegativas/genética , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADNRESUMEN
Anaerobic enrichments with acetate as electron donor and carbon source, and elemental sulfur as electron acceptor at 4 M NaCl using anaerobic sediments and brines from several hypersaline lakes in Kulunda Steppe (Altai, Russia) resulted in isolation in pure culture of four strains of obligately anaerobic haloarchae growing exclusively by sulfur respiration. Such metabolism has not yet been demonstrated in any known species of Halobacteria, and in the whole archaeal kingdom, acetate oxidation with sulfur as acceptor was not previously demonstrated. The four isolates had nearly identical 16S rRNA gene sequences and formed a novel genus-level branch within the family Halobacteriaceae. The strains had a restricted substrate range limited to acetate and pyruvate as electron donors and elemental sulfur as electron acceptor. In contrast to aerobic haloarchaea, the biomass of anaerobic isolates completely lacked the typical red pigments. Growth with acetate+sulfur was observed between 3-5 M NaCl and at a pH range from 6.7 to 8.0. The membrane core lipids were dominated by archaeols. On the basis of distinct physiological and phylogenetic data, the sulfur-respiring isolates represent a novel species of a new genus in the family Halobacteriaceae, for which the name Halanaeroarchaeaum sulfurireducens gen. nov., sp. nov. is proposed. The type strain of the type species is HSR2T (=JCM 30661T=UNIQEM U935T).
Asunto(s)
Halobacteriales/clasificación , Lagos/microbiología , Filogenia , Salinidad , Azufre/metabolismo , Composición de Base , ADN de Archaea/genética , Sedimentos Geológicos/microbiología , Halobacteriales/genética , Halobacteriales/aislamiento & purificación , Oxidación-Reducción , Fosfolípidos/química , ARN Ribosómico 16S/genética , Federación de Rusia , Sales (Química) , Análisis de Secuencia de ADNRESUMEN
Representatives of the crenarchaeal genus Desulfurococcus are strictly anaerobic hyperthermophiles with an organotrophic type of metabolism. Since 1982, five Desulfurococcus species names have been validly published: Desulfurococcus mucosus, D. mobilis, D. amylolyticus, D. fermentans and D. kamchatkensis. Recently, the genomic sequences of all five species became available, promoting the refinement of their taxonomic status. Analysis of full-length high-quality 16S rRNA gene sequences shows that the sequences of D. mobilis and D. mucosus are 100 % identical and differ by 2.2 % from those of D. amylolyticus, D. fermentans and D. kamchatkensis. The latter three sequences differ from each other by 0.1-0.3 % (99.9 % similarity in the D amylolyticus-D. kamchatkensis pair and 99.7 % in the pairs involving D. fermentans). In silico prediction of DNA-DNA hybridization (DDH) values by comparison of genomes using ggdc 2.0 blast+ at http://ggdc.dsmz.de/ produced results that correlated with the 16S rRNA gene sequence similarity values. In the D. mucosus-D. mobilis and D. amylolyticus-D. kamchatkensis pairs, the predicted DDH values were 99 and 92 %, respectively, much higher than the recommended 70 % species-delimiting DDH value. Between members of different pairs, these values were no higher than 20 %. For D. fermentans, its predicted DDH values were around 70 % with D. amylolyticus and D. kamchatkensis and no higher than 20 % with D. mobilis and D. mucosus. These results indicated that D. mobilis should be reclassified as a synonym of D. mucosus, whereas D. kamchatkensis and D. fermentans should be reclassified as synonyms of D. amylolyticus.
Asunto(s)
Desulfurococcaceae/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , ADN de Archaea/genética , Desulfurococcaceae/genética , Desulfurococcaceae/aislamiento & purificación , Islandia , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Two novel cell-wall-less, acidophilic, mesophilic, organotrophic and facultatively anaerobic archaeal strains were isolated from acidic streamers formed on the surfaces of copper-ore-containing sulfidic deposits in south-west Spain and North Wales, UK. Cells of the strains varied from 0.1 to 2 µm in size and were pleomorphic, with a tendency to form filamentous structures. The optimal pH and temperature for growth for both strains were 1.0-1.2 and 37-40 °C, with the optimal substrates for growth being beef extract (3âg l- 1) for strain S5T and beef extract with tryptone (3 and 1âg l- 1, respectively) for strain PM4. The lipid composition was dominated by intact polar lipids consisting of a glycerol dibiphytanyl glycerol tetraether (GDGT) core attached to predominantly glycosidic polar headgroups. In addition, free GDGT and small relative amounts of intact and core diether lipids were present. Strains S5T and PM4 possessed mainly menaquinones with minor fractions of thermoplasmaquinones. The DNA G+C content was 37.3âmol% in strain S5T and 37.16âmol% for strain PM4. A similarity matrix of 16S rRNA gene sequences (identical for both strains) showed their affiliation to the order Thermoplasmatales, with 73.9-86.3 % identity with sequences from members of the order with validly published names. The average nucleotide identity between genomes of the strains determined in silico was 98.75 %, suggesting, together with the 16S rRNA gene-based phylogenetic analysis, that the strains belong to the same species. A novel family, Cuniculiplasmataceae fam. nov., genus Cuniculiplasma gen. nov. and species Cuniculiplasma divulgatum sp. nov. are proposed based on the phylogenetic, chemotaxonomic analyses and physiological properties of the two isolates, S5T and PM4 ( = JCM 30641 = VKM B-2940). The type strain of Cuniculiplasma divulgatum is S5T ( = JCM 30642T = VKM B-2941T).
Asunto(s)
Filogenia , Thermoplasmales/clasificación , Microbiología del Agua , Composición de Base , Pared Celular/química , ADN de Archaea/genética , Lípidos/química , Minería , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España , Thermoplasmales/genética , Thermoplasmales/aislamiento & purificación , Reino Unido , Vitamina K 2/químicaRESUMEN
An obligately anaerobic, hyperthermophilic, organoheterotrophic archaeon, strain 1633T, was isolated from a terrestrial hot spring of the Uzon Caldera (Kamchatka Peninsula, Russia). Cells were regular cocci, 0.5-0.9 µm in diameter, with one flagellum. The temperature range for growth was 80-95 °C, with an optimum at 84 °C. Strain 1633T grew on yeast extract, beef extract, peptone, cellulose and cellobiose. No growth was detected on other sugars or carbohydrates, organic acids, or under autotrophic conditions. The only detected growth products were CO2, acetate, and H2. The growth rate was stimulated by elemental sulfur, which was reduced to hydrogen sulfide. The in silico-calculated G+C content of the genomic DNA of strain 1633T was 55.64âmol%. 16S rRNA gene sequence analysis placed strain 1633T together with the non-validly published 'Thermogladius shockii' strain WB1 in a separate genus-level cluster within the family Desulfurococcaceae. Average nucleotide identity (ANI) results revealed 75.72 % identity between strain 1633T and 'Thermogladius shockii' WB1. Based on these results we propose a novel genus and species with the name Thermogladius calderae gen. nov., sp. nov. The type strain of the type species is 1633T ( = DSM 22663T = VKM B-2946T).
RESUMEN
A novel aerotolerant anaerobic, moderately thermophilic, organotrophic bacterium, strain MBL-TLPT, was isolated from a sample of microbial mat, developed under the flow of subsurface water in TauTona gold mine, South Africa. Cells of the new isolate were flagellated, spore-forming rods, 0.25-0.5 µm in width and 3-15 µm in length. Strain MBL-TLPT grew in the temperature range from 25 to 58 °C, pH range from 5.6 to 8.8 and at NaCl concentration from 0 to 85 g l-1. The isolate was able to ferment yeast extract and mono-, oligo- and polysaccharides, including starch and xanthan gum. The G+C content of the DNA was 35 mol%. Phylogenetic analysis of 16S rRNA gene sequences of strain MBL-TLPT and relatives showed its affiliation to the genus Tepidibacillus. Tepidibacillus fermentans STGHT was its closest relative (97.1 % identity of 16S rRNA gene sequences). Based on phylogenetic analysis and the physiological properties of the novel isolate, we propose a novel species, Tepidibacillus infernus sp. nov., with MBL-TLPT(=DSM 28123T=VKM Ð-2949T) as the type strain.