Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 451(7181): 964-9, 2008 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-18288188

RESUMEN

Glucose flux through the hexosamine biosynthetic pathway leads to the post-translational modification of cytoplasmic and nuclear proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc). This tandem system serves as a nutrient sensor to couple systemic metabolic status to cellular regulation of signal transduction, transcription, and protein degradation. Here we show that O-GlcNAc transferase (OGT) harbours a previously unrecognized type of phosphoinositide-binding domain. After induction with insulin, phosphatidylinositol 3,4,5-trisphosphate recruits OGT from the nucleus to the plasma membrane, where the enzyme catalyses dynamic modification of the insulin signalling pathway by O-GlcNAc. This results in the alteration in phosphorylation of key signalling molecules and the attenuation of insulin signal transduction. Hepatic overexpression of OGT impairs the expression of insulin-responsive genes and causes insulin resistance and dyslipidaemia. These findings identify a molecular mechanism by which nutritional cues regulate insulin signalling through O-GlcNAc, and underscore the contribution of this modification to the aetiology of insulin resistance and type 2 diabetes.


Asunto(s)
Resistencia a la Insulina/fisiología , N-Acetilglucosaminiltransferasas/metabolismo , Fosfatidilinositoles/metabolismo , Sistemas de Mensajero Secundario , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacología , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Insulina/farmacología , Metabolismo de los Lípidos , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas , Sistemas de Mensajero Secundario/efectos de los fármacos
2.
Am J Physiol Cell Physiol ; 300(3): C456-65, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21178104

RESUMEN

The protein O-linked ß-N-acetylglucosamine (O-GlcNAc) modification plays an important role in skeletal muscle development and physiological function. In this study, bitransgenic mice were generated that overexpressed NCOAT(GK), an O-GlcNAcase-inactive spliced variant of the O-GlcNAcase gene, specifically in skeletal muscle using the muscle creatine kinase promoter. Expression of the chimeric enhanced green fluorescent protein-NCOAT(GK) transgene caused an increase of cellular O-GlcNAc levels, along with the accumulation and activation of proapoptotic factors in muscles of bitransgenic mice. The consequence of overexpressing the transgene for a 2-wk period was muscle atrophy and, in some cases, resulted in the death of male mice. Muscle atrophy is a common complication of many diseases, some of which correlate markedly with high cellular O-GlcNAc levels, such as diabetes. Our study provides direct evidence linking muscle atrophy and the disruption of O-GlcNAcase activity.


Asunto(s)
Empalme Alternativo/genética , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Atrofia Muscular/enzimología , Atrofia Muscular/patología , beta-N-Acetilhexosaminidasas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Transgénicos , Fibras Musculares Esqueléticas/metabolismo , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transgenes/genética , Regulación hacia Arriba/genética , beta-N-Acetilhexosaminidasas/química , beta-N-Acetilhexosaminidasas/genética
3.
Biochem Biophys Res Commun ; 387(1): 70-6, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19577582

RESUMEN

Diminished proteolytic functionality in the lens may cause cataracts. We have reported that O-GlcNAc is an endogenous inhibitor of the proteasome. We hypothesize that in the lens there is a cause-and-effect relationship between proteasome inhibition by O-GlcNAc, and cataract formation. To demonstrate this, we established novel transgenic mouse models to over-express a dominant-negative form of O-GlcNAcase, GK-NCOAT, in the lens. Expression of GK-NCOAT suppresses removal of O-GlcNAc from proteins, resulting in increased levels of O-GlcNAc in the lenses of our transgenic mice, along with decreased proteasome function. We observed that transgenic mice developed markedly larger cataracts than controls and lens fiber cell denucleation was inhibited. Our study suggests that increased O-GlcNAc in the lens could lead to cataract formation and attenuation of lens fiber cell denucleation by inhibition of proteasome function. These findings may explain why cataract formation is a common complication of diabetes since O-GlcNAc is derived from glucose.


Asunto(s)
Acetilglucosamina/metabolismo , Catarata/patología , Diferenciación Celular , Cristalino/citología , Cristalino/patología , gamma-Cristalinas/metabolismo , Animales , Histona Acetiltransferasas/genética , Hialuronoglucosaminidasa/genética , Ratones , Ratones Transgénicos
4.
Mol Cell Biol ; 26(22): 8539-50, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16966374

RESUMEN

Mechanisms controlling nuclear hormone receptors are a central question to mammalian developmental and disease processes. Herein, we show that a subtle increase in O-GlcNAc levels inhibits activation of nuclear hormone receptors. In vivo, increased levels of O-GlcNAc impair estrogen receptor activation and cause a decrease in mammary ductal side-branching morphogenesis associated with loss of progesterone receptors. Increased O-GlcNAc levels suppress transcriptional expression of coactivators and of the nuclear hormone receptors themselves. Surprisingly, increased O-GlcNAc levels are also associated with increased transcription of genes encoding corepressor proteins NCoR and SMRT. The association of the enzyme O-GlcNAc transferase with these corepressors contributes to specific regulation of nuclear hormone receptors by O-GlcNAc. Overall, transcriptional inhibition is related to the integrated effect of O-GlcNAc by direct modification of critical elements of the transcriptome and indirectly through O-GlcNAc modification of the proteasome.


Asunto(s)
Regulación de la Expresión Génica , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transcripción Genética , Animales , Línea Celular Tumoral , Humanos , Glándulas Mamarias Humanas/embriología , Glándulas Mamarias Humanas/enzimología , Ratones , Ratones Transgénicos , Modelos Biológicos , N-Acetilglucosaminiltransferasas/fisiología , Proteínas Nucleares/metabolismo , Co-Represor 1 de Receptor Nuclear , Proteínas Represoras/metabolismo , Transfección
5.
Biochim Biophys Acta ; 1760(5): 829-39, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16517082

RESUMEN

NCOAT is a bifunctional nucleo-cytoplasmic protein with both O-GlcNAcase and histone acetyltransferase domains. The O-GlcNAcase domain catalyzes the removal of O-linked GlcNAc modifications from proteins and we have found that it resides in the N-terminal third of NCOAT. The recognition of the substrate GlcNAc suggests that the O-GlcNAcase is related in structure and catalytic mechanism to chitinases, hexosaminidases and hyaluronidases. These families of glycosidases all possess a catalytic doublet of carboxylate-containing residues, with one providing an acid-base function, and the second acting to orient and use the N-acetyl group of GlcNAc during catalysis. Indeed, we show that the O-GlcNAcase also possesses the catalytic doublet motif shared among these enzymes and that these two essential residues are aspartic acids at positions 175 and 177, respectively, in mouse NCOAT. In addition, a conserved cysteine at 166 and a conserved aspartic acid at 174 were also found to be necessary for fully efficient enzymatic activity. Given this information, we propose that the O-GlcNAcase active site resembles those of the above glycosidases which carry out the hydrolysis of GlcNAc linkages in a substrate-assisted acid-base manner.


Asunto(s)
Acetilglucosaminidasa/química , Acetilglucosaminidasa/genética , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Concentración de Iones de Hidrógeno , Ratones , Datos de Secuencia Molecular , Mutagénesis , Mutación , beta-N-Acetilhexosaminidasas
6.
Oncogene ; 24(9): 1491-500, 2005 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-15674344

RESUMEN

KLF4/GKLF normally functions in differentiating epithelial cells, but also acts as a transforming oncogene in vitro. To examine the role of this zinc finger protein in skin, we expressed the wild-type human allele from inducible and constitutive promoters. When induced in basal keratinocytes, KLF4 rapidly abolished the distinctive properties of basal and parabasal epithelial cells. KLF4 caused a transitory apoptotic response and the skin progressed through phases of hyperplasia and dysplasia. By 6 weeks, lesions exhibited nuclear KLF4 and other morphologic and molecular similarities to squamous cell carcinoma in situ. p53 determined the patch size sufficient to establish lesions, as induction in a mosaic pattern produced skin lesions only when p53 was deficient. Compared with p53 wild-type animals, p53 hemizygous animals had early onset of lesions and a pronounced fibrovascular response that included outgrowth of subcutaneous sarcoma. A KLF4-estrogen receptor fusion protein showed tamoxifen-dependent nuclear localization and conditional transformation in vitro. The results suggest that KLF4 can function in the nucleus to induce squamous epithelial dysplasia, and indicate roles for p53 and epithelial-mesenchymal signaling in these early neoplastic lesions.


Asunto(s)
Diferenciación Celular/fisiología , División Celular/efectos de los fármacos , Proteínas de Unión al ADN/biosíntesis , Células Epiteliales/patología , Queratinocitos/citología , Piel/patología , Factores de Transcripción/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Cruzamientos Genéticos , Cartilla de ADN , Doxorrubicina/farmacología , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Transfección
7.
Biochim Biophys Acta ; 1743(3): 231-42, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15843037

RESUMEN

Wild-type transforming growth factor alpha (TGFalpha) expression in lactotrope cells in the pituitary gland led to lactotrope-specific pituitary hyperplasia and adenomata. To indicate whether the EGF receptor is involved in this TGFalpha-mediated phenotype, we bred TGFalpha mice with mice expressing the cytoplasmic truncated-EGF receptor (EGFR-tr), which is dominant-negative in other models. These bitransgenic mice developed pituitary pathology despite expression of the dominant-negative receptor. To further characterize this observation, we generated two lineages of transgenic mice that overexpress mutant forms of TGFalpha: a processed soluble form (s TGFalpha) and a cytoplasmic-deleted form (TGFalphaDeltaC). While sTGFalpha expression in lactotrope cells failed to induce autocrine lactotrope hyperplasia, the pituitary became very enlarged due to proliferation of neighboring interstitial cells. In contrast, the TGFalphaDeltaC mice did not develop a phenotype, although the mRNA and protein were present in the pituitary and this form of TGFalpha was confirmed to be biologically active and targeted properly to the plasma membrane of cultured CHO cells. The results suggest that the cytoplasmic domain of TGFalpha is required for autocrine parenchymal tumor formation in the pituitary gland. This signal cannot be inhibited by the EGFR-tr. Conversely, the released form of TGFalpha appears to have primarily paracrine activity.


Asunto(s)
Receptores ErbB/genética , Hipófisis/metabolismo , Factor de Crecimiento Transformador alfa/genética , Animales , Células CHO , División Celular , Membrana Celular/metabolismo , Colorantes , Cricetinae , Citoplasma/metabolismo , Receptores ErbB/biosíntesis , Receptores ErbB/metabolismo , Hiperplasia , Ratones , Ratones Transgénicos , Índice Mitótico , Fenotipo , Hipófisis/patología , Estructura Terciaria de Proteína , Transducción de Señal , Solubilidad , Factor de Crecimiento Transformador alfa/biosíntesis , Factor de Crecimiento Transformador alfa/metabolismo
8.
Mol Cell Endocrinol ; 194(1-2): 135-46, 2002 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-12242036

RESUMEN

Type 2 diabetes mellitus results from a complex interaction between nutritional excess and multiple genes. Whereas pancreatic beta-cells normally respond to glucose challenge by rapid insulin release (first phase insulin secretion), there is a loss of this acute response in virtually all of the type 2 diabetes patients with significant fasting hyperglycemia. Our previous studies demonstrated that irreversible intracellular accumulation of a glucose metabolite, protein O-linked N-acetylglucosamine modification (O-GlcNAc), is associated with pancreatic beta-cell apoptosis. In the present study, we show that streptozotocin (STZ), a non-competitive chemical blocker of O-GlcNAcase, induces an insulin secretory defect in isolated rat islet cells. In contrast, transgenic mice with down-regulated glucose to glucosamine metabolism in beta-cells exhibited an enhanced insulin secretion capacity. Interestingly, the STZ blockade of O-GlcNAcase activity is also associated with a growth hormone secretory defect and impairment of intracellular secretory vesicle trafficking. These results provide evidence for the roles of O-GlcNAc in the insulin secretion and possible involvement of O-GlcNAc in general glucose-regulated hormone secretion pathways.


Asunto(s)
Acetilglucosaminidasa/antagonistas & inhibidores , Hormona del Crecimiento/efectos de los fármacos , Antagonistas de Insulina/farmacología , Insulina/metabolismo , Estreptozocina/farmacología , Acetilglucosamina/metabolismo , Acetilglucosamina/fisiología , Animales , Glucosa/metabolismo , Hormona del Crecimiento/metabolismo , Histona Acetiltransferasas , Secreción de Insulina , Islotes Pancreáticos/citología , Masculino , Ratones , Ratones Transgénicos , Complejos Multienzimáticos , Ratas , Ratas Sprague-Dawley , Vesículas Secretoras , beta-N-Acetilhexosaminidasas
9.
Int J Mol Med ; 10(5): 535-9, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12373287

RESUMEN

Although only recently described, the pathway of O-linked protein glycosylation is already being implicated in diseases as diverse as cancer and Alzheimer's. Unlike the better known N-linked pathway, O-linked protein glycosylation is a dynamic and regulated event, much like tyrosine phosphorylation. During the process of O-glycosylation, the enzyme O-GlcNAc transferase (OGT) uses the substrate UDP-N-acetylglucosamine (UDP-GlcNAc) to attach a single O-linked N-acetylglucosamine (O-GlcNAc) to nuclear and cytosolic proteins on serine or threonine residues. Conversely, the enzyme O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase (O-GlcNAcase) removes the O-GlcNAc, returning the protein to its baseline state until the cycle repeats itself. Although proving to be of interest in many different tissues, this pathway is especially important in pancreatic beta-cells. The beta-cell is unique in containing much more OGT than any other cell type. This enables beta-cells to respond to physiological increases in the glucose concentration by converting glucose to the OGT substrate UDP-GlcNAc, thereby dynamically coupling intracellular O-linked protein glycosylation to the extracellular glucose concentration. As a result, the beta-cell also appears to be especially susceptible to disruption of the O-glycosylation pathway. The diabetogenic agent streptozotocin (STZ), a UDP-GlcNAc analogue, causes beta-cell toxicity by irreversibly inhibiting O-GlcNAcase, while the diabetogenic agent alloxan (ALX), also a UDP-GlcNAc analog irreversibly inhibits OGT. This review will summarize what is currently known about beta-cell O-glycosylation and expand upon historical observations of chemically-induced beta-cell toxicity in animals to develop a model suggesting how beta-cell O-glycosylation is also involved in the development and progression of type 2 diabetes in humans.


Asunto(s)
Diabetes Mellitus/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Islotes Pancreáticos/metabolismo , Aloxano/toxicidad , Animales , Diabetes Mellitus/etiología , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/metabolismo , Glicosilación , Humanos , Islotes Pancreáticos/efectos de los fármacos , Modelos Biológicos , Estreptozocina/toxicidad
10.
FEBS Lett ; 584(1): 49-54, 2010 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-19932102

RESUMEN

The FOXO4 transcription factor plays an important role in cell survival in response to oxidative stress. The regulation of FOXO4 is orchestrated by post-translational modifications including phosphorylation, acetylation, and ubiquitination. Here, we demonstrate that O-GlcNAcylation also contributes to the FOXO4-dependent oxidative stress response. We show that hydrogen peroxide treatment of HEK293 cells increases FOXO4 association with OGT, the enzyme that adds O-GlcNAc to proteins, causing FOXO4 O-GlcNAcylation and enhanced transcriptional activity under acute oxidative stress. O-GlcNAcylation is known to be protective for cells under stress conditions, including oxidative stress. Our data provide a mechanism of FOXO4 anti-oxidative protection through O-GlcNAcylation.


Asunto(s)
Acetilglucosamina/metabolismo , Regulación de la Expresión Génica , Estrés Oxidativo/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Acilación , Proteínas de Ciclo Celular , Línea Celular , Factores de Transcripción Forkhead , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo
11.
Physiology (Bethesda) ; 22: 373-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18073410

RESUMEN

Proteasomes are major cellular proteases that are important for protein turnover and cell survival. Dysregulation of proteasome is related to many major human diseases. Regulation of the proteasome is beginning to be understood by the recent findings that proteasomes are modified and regulated by metabolic factors O-GlcNAcylation and PKA phosphorylation.


Asunto(s)
Apoptosis , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Acilación , Animales , Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Glucemia/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glicosilación , Humanos , Fármacos Neuroprotectores/farmacología , Fosforilación , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasoma , Transducción de Señal/efectos de los fármacos , Ubiquitina/metabolismo
12.
J Biol Chem ; 282(31): 22460-71, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17565987

RESUMEN

Dysregulation of the proteasome has been documented in a variety of human diseases such as Alzheimer, muscle atrophy, cataracts etc. Proteolytic activity of 26 S proteasome is ATP- and ubiquitin-dependent. O-GlcNAcylation of Rpt2, one of the AAA ATPases in the 19 S regulatory cap, shuts off the proteasome through the inhibition of ATPase activity. Thus, through control of the flux of glucose into O-GlcNAc, the function of the proteasome is coupled to glucose metabolism. In the present study we found another metabolic control of the proteasome via cAMP-dependent protein kinase (PKA). Contrary to O-Glc-NAcylation, PKA activated proteasomes both in vitro and in vivo in association with the phosphorylation at Ser(120) of another AAA ATPase subunit, Rpt6. Mutation of Ser(120) to Ala blocked proteasome function. The stimulatory effect of PKA and the phosphorylation of Rpt6 were reversible by protein phosphatase 1 gamma. Thus, hormones using the PKA system can also regulate proteasomes often in concert with glucose metabolism. This finding might lead to novel strategies for the treatment of proteasome-related diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/fisiología , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , AMP Cíclico/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Isoquinolinas/farmacología , Riñón/metabolismo , Proteínas con Dominio LIM , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Fosfatasa 1 , Ratas , Factor de Transcripción Sp1/metabolismo , Sulfonamidas/farmacología , Factores de Transcripción/metabolismo
13.
J Cell Biochem ; 98(5): 1062-75, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16598783

RESUMEN

Modification of intracellular proteins by the beta-linkage of the monosaccharide, N-acetylglucosamine to serine or threonine hydroxyls (O-GlcNAc) is abundant and reversible. Although many proteins bear this post-translational covalent modification, the changes in function of the proteins as a result of this modification are only starting to be understood. In this article, we describe how aspects of the flux from the glucose backbone to this modification are modified and how the cellular activity and content of the GC-box binding transcription factor, Sp1, is altered by O-glycosylation. The association of the enzyme that puts on the O-GlcNAc modification with the bi-functional enzyme that removes this modification is discussed relative to the transition between transcriptional repression and activation.


Asunto(s)
Acetilglucosamina/metabolismo , Glicoproteínas/metabolismo , Monosacáridos/metabolismo , Procesamiento Proteico-Postraduccional , Acetilglucosamina/inmunología , Animales , Apoptosis , Glutamina/metabolismo , Glicosilación , Humanos , Monosacáridos/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Estrógenos/metabolismo , Transducción de Señal , Factor de Transcripción Sp1/metabolismo , Estreptozocina/farmacología , Transaminasas/antagonistas & inhibidores , Transaminasas/metabolismo , Transcripción Genética/genética
14.
Biochem Biophys Res Commun ; 340(2): 526-34, 2006 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-16376298

RESUMEN

Streptozotocin (STZ) is a 2-deoxy-d-glucopyranose derivative of a class of drugs known as alkylnitrosoureas, and is an established diabetogenic agent whose cytotoxic affects on pancreatic beta-cells has been partially explained by the presence of its N-methyl-N-nitrosourea side chain, which has the ability to release nitric oxide as well as donate methyl groups to nucleotides in DNA. It has also been observed that STZ administration results in a rise in the level of O-GlcNAcylated proteins within beta-cells. Not coincidentally, STZ has also been shown to directly inhibit the O-GlcNAcase activity of the enzyme NCOAT in vitro, which is the only enzyme that possesses the ability to remove O-GlcNAc modifications on proteins in the nucleus and cytosol. Since O-GlcNAc modification plays a role on a number of proteins in a vast amount of cellular processes, this shift in whole-cell protein O-GlcNAcylation state affords another source of cell death. We set about to find the exact mechanism by which STZ inhibits O-GlcNAcase activity. Inhibition is achievable because the GlcNAc analog STZ targets the active site of the enzyme whereby it is catalyzed. During this process, the enzyme converts STZ to a compound that closely resembles the natural ligand transition state, but is distinctly more stable energetically. As a result, this analog is catalyzed to completion at a much slower rate, thereby out-competing GlcNAc substrate for the active site, and inhibiting the enzyme.


Asunto(s)
Acetilglucosamina/química , Acetilglucosaminidasa/antagonistas & inhibidores , Acetilglucosaminidasa/química , Inhibidores Enzimáticos/química , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/química , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Estreptozocina/análogos & derivados , Estreptozocina/química , Estreptozocina/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosaminidasa/biosíntesis , Conformación de Carbohidratos , Catálisis , Inhibidores Enzimáticos/metabolismo , Histona Acetiltransferasas/biosíntesis , Cinética , Espectrometría de Masas , Complejos Multienzimáticos/biosíntesis , Resonancia Magnética Nuclear Biomolecular , Especificidad por Sustrato , beta-N-Acetilhexosaminidasas
15.
J Biol Chem ; 281(7): 3918-25, 2006 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-16356930

RESUMEN

Nuclear cytoplasmic O-GlcNAcase and acetyltransferase (NCOAT) is a bifunctional enzyme with both glycoside hydrolase and alkyltransferase activity. Its O-GlcNAcase active site lies in the N terminus of the enzyme and its histone acetyltransferase (HAT) domain lies in the C terminus. Whereas the HAT domain of the enzyme is catalytically and structurally similar to other acetyltransferases across subfamilies, NCOAT has a motif resembling a zinc finger-like domain unique to the MYST family of HATs. Among the MYST family, this zinc finger, or zinc finger-like domain, is responsible for making contacts with the histone tails within nucleosomes for the HAT to catalyze its respective reaction. Here, we show that NCOAT has the ability to directly associate with both an acetylated and unacetylated histone H4 tail in vitro, and a potential zinc finger-like motif found in NCOAT is implicated in this nucleosomal contact, and is necessary for fully efficient enzymatic activity. Subsequent to the catalysis of acetyltransfer to lysine 8 of histone H4 for the enzyme, however, the substrate is released and NCOAT can no longer bind H4 in our assays. Furthermore, this finger domain by itself is sufficient to bind histone H4.


Asunto(s)
Acetilglucosaminidasa/química , Histona Acetiltransferasas/química , Complejos Multienzimáticos/química , Dedos de Zinc , Acetilglucosaminidasa/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Ditiotreitol/farmacología , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Ratones , Complejos Multienzimáticos/metabolismo , beta-N-Acetilhexosaminidasas
16.
Glycobiology ; 16(6): 551-63, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16505006

RESUMEN

Although the knowledge that nuclear and cytoplasmic proteins are modified with N-acetylglucosamine has existed for decades, little has been shown as to its function until recently. There are now substantial data highlighting the significance of proper regulation of this modification in multiple cellular processes. Currently, only two enzymes are known that regulate this modification. O-GlcNAc transferase (OGT) modifies protein substrates posttranslationally by adding the N-acetylglucosamine. Bifunctional nuclear/cytoplasmic O-GlcNAcase and acetyl transferase (NCOAT) is responsible for cleaving the modification from target proteins. Here, we demonstrate for the first time an unusual association of these two opposing enzymes into a single O-GlcNAczyme complex. NCOAT and OGT associate strongly through specific domains such that NCOAT accompanies OGT, with histone deacetylases (HDACs), into transcription corepression complexes. Exclusion of NCOAT activities from OGT association blocks proper estrogen-dependent cell signaling as well as mammary development in transgenic mice. This demonstrates that NCOAT is in a strategic position to rapidly counteract OGT and HDAC without requiring its recruitment.


Asunto(s)
Acetilglucosamina/metabolismo , Acetilglucosaminidasa/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Complejos Multienzimáticos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de Señal/fisiología , Acetilglucosaminidasa/genética , Animales , Línea Celular , Estrógenos/fisiología , Femenino , Histona Acetiltransferasas/genética , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Transgénicos , Complejos Multienzimáticos/genética , N-Acetilglucosaminiltransferasas/genética , beta-N-Acetilhexosaminidasas
17.
Cell ; 110(1): 69-80, 2002 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-12150998

RESUMEN

Transcription factors and RNA polymerase II can be modified by O-linked N-acetylglucosamine (O-GlcNAc) monosaccharides at serine or threonine residues, yet the precise functional roles of this modification are largely unknown. Here, we show that O-GlcNAc transferase (OGT), the enzyme that catalyzes this posttranslational modification, interacts with a histone deacetylase complex by binding to the corepressor mSin3A. Functionally, OGT and mSin3A cooperatively repress transcription in parallel with histone deacetylation. We propose that mSin3A targets OGT to promoters to inactivate transcription factors and RNA polymerase II by O-GlcNAc modification, which acts in concert with histone deacetylation to promote gene silencing in an efficient and specific manner.


Asunto(s)
Regulación de la Expresión Génica , Histona Desacetilasas/fisiología , N-Acetilglucosaminiltransferasas/fisiología , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Grupos de Población Animal , Animales , Células COS , Silenciador del Gen , Genes Reporteros , Glicoproteínas , Histona Desacetilasas/metabolismo , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , Regiones Promotoras Genéticas/fisiología , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Factores de Transcripción/metabolismo , Transcripción Genética , Células Tumorales Cultivadas
18.
J Biol Chem ; 279(51): 53665-73, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15485860

RESUMEN

Histones and transcription factors are regulated by a number of post-translational modifications that in turn regulate the transcriptional activity of genes. These modifications occur in large, multisubunit complexes. We have reported previously that mSin3A can recruit O-GlcNAc transferase (OGT) along with histone deacetylase into such a corepressor complex. This physical association allows OGT to act cooperatively with histone deacetylation in gene repression by catalyzing the O-GlcNAc modification on specific transcription factors to inhibit their activity. For rapid, reversible gene regulation, the enzymes responsible for the converse reactions must be present. Here, we report that O-GlcNAcase, which is responsible for the removal of O-GlcNAc additions on nuclear and cytosolic proteins, possesses intrinsic histone acetyltransferase (HAT) activity in vitro. Free as well as reconstituted nucleosomal histones are substrates of this bifunctional enzyme. This protein, now termed NCOAT (nuclear cytoplasmic O-GlcNAcase and acetyltransferase) has a typical HAT domain that has both active and inactive states. This finding demonstrates that NCOAT may be regulated to reduce the state of glycosylation of transcriptional activators while increasing the acetylation of histones to allow for the concerted activation of eukaryotic gene transcription.


Asunto(s)
Acetilglucosaminidasa/química , Acetiltransferasas/química , Complejos Multienzimáticos/química , Acetilación , Secuencia de Aminoácidos , Animales , Sitios de Unión , Núcleo Celular/metabolismo , Cromatografía en Gel , Clonación Molecular , Citosol/metabolismo , Células HeLa , Hexosaminidasas/química , Histona Acetiltransferasas , Histonas/química , Humanos , Inmunoprecipitación , Lisina/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nucleosomas/metabolismo , Péptidos/química , Plásmidos/metabolismo , Mutación Puntual , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Estreptozocina/farmacología , Transcripción Genética , beta-N-Acetilhexosaminidasas
19.
J Biol Chem ; 279(29): 29988-93, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15133036

RESUMEN

A protein encoded by a new gene with approximately 75% homology to glutamine-fructose-6-phosphate amidotransferase (GFAT) was termed GFAT2 on the basis of this similarity. The mouse GFAT2 cDNA was cloned, and the protein was expressed with either an N-terminal glutathione S-transferase or His tag. The purified protein expressed in mammalian cells had GFAT activity. The Km values for the two substrates of reaction, fructose 6-phosphate and glutamine, were determined to be 0.8 mm for fructose 6-phosphate and 1.2 mm for glutamine, which are within the ranges determined for GFAT1. The protein sequence around the serine 202 of GFAT2 was conserved to the serine 205 of GFAT1, whereas the serine at 235 in GFAT1 was not present in GFAT2. Previously we showed that phosphorylation of serine 205 in GFAT1 by the catalytic subunit of cAMP-dependent protein kinase (PKA) inhibits its activity. Like GFAT1, GFAT2 was phosphorylated by PKA, but GFAT2 activity increased approximately 2.2-fold by this modification. When serine 202 of GFAT2 was mutated to an alanine, the enzyme not only became resistant to phosphorylation, but also the increase in activity in response to PKA also was blocked. These results indicated that the phosphorylation of serine 202 was necessary and sufficient for these alterations by PKA. GFAT2 was modestly inhibited (15%) by UDP-GlcNAc but not through detectable O-glycosylation. GFAT2 is, therefore, an isoenzyme of GFAT1, but its regulation by cAMP is the opposite, allowing differential regulation of the hexosamine pathway in specialized tissues.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Transferasas de Grupos Nitrogenados/metabolismo , Acetilglucosamina/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/metabolismo , Dominio Catalítico , Línea Celular , Clonación Molecular , AMP Cíclico/metabolismo , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Fructosadifosfatos/metabolismo , Regulación de la Expresión Génica , Glutamina/metabolismo , Glutatión Transferasa/metabolismo , Glicosilación , Haplorrinos , Cinética , Ratones , Datos de Secuencia Molecular , Mutagénesis , Mutación , Transferasas de Grupos Nitrogenados/química , Fosforilación , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Serina/química , Distribución Tisular , Virus Vaccinia/metabolismo
20.
Cell ; 115(6): 715-25, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14675536

RESUMEN

The ubiquitin proteasome system classically selects its substrates for degradation by tagging them with ubiquitin. Here, we describe another means of controlling proteasome function in a global manner. The 26S proteasome can be inhibited by modification with the enzyme, O-GlcNAc transferase (OGT). This reversible modification of the proteasome inhibits the proteolysis of the transcription factor Sp1 and a hydrophobic peptide through inhibition of the ATPase activity of 26S proteasomes. The Rpt2 ATPase in the mammalian proteasome 19S cap is modified by O-GlcNAc in vitro and in vivo and as its modification increases, proteasome function decreases. This mechanism may couple proteasomes to the general metabolic state of the cell. The O-GlcNAc modification of proteasomes may allow the organism to respond to its metabolic needs by controlling the availability of amino acids and regulatory proteins.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Complejos Multienzimáticos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas/metabolismo , Ubiquitinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Aminoácidos/metabolismo , Animales , Línea Celular , Metabolismo Energético/fisiología , Complejos Multienzimáticos/antagonistas & inhibidores , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal , ARN Interferente Pequeño/farmacología , Ratas , Factor de Transcripción Sp1/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda