Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38730806

RESUMEN

To improve the in situ soil stabilization, different chemical additives are used (ion exchange compounds, additives based on H2SO4 or vinyl polymers, and organic additives using lignosulfonates). One interesting alternative is the production of additives from various waste materials. The extensive testing of waste-based blends with soil was performed; the mechanical (unconfined compressive strength (UCS)) and hydraulic (capillary rise, water absorption, and frost resistance (FR)) soil properties were measured. The optimization process led to obtaining additive compositions ensuring high strength and sealing properties: by-pass ash from the ceramics industry, waste H2SO4, pyrolytic waxes/oils from waste mixed plastics, waste tires and HDPE, and emulsion from chewing gum waste. For sandy soil, the following additives were the most promising: emulsion from pyrolytic wax (EPW) from waste PE foil (WPEF) with the addition of waste H2SO4, pyrolytic-oil emulsion from waste tires, EPW from waste mixed plastics with the addition of "by-pass" waste ash and NaOH, EPW from WPEF with the addition of NaOH, and EPW from WPEF reaching up to 93% FR, a 79.6% 7-day UCS increase, and a 27.6% of 28-day UCS increase. For clay: EPW from WPEF with the addition of NaOH, EPW from WPEF with the addition of waste H2SO4, and solely EPW from WPEF reaching up to 7.5% FR, an 80.7% 7-day UCS increase, and a 119.1% 28-day UCS increase.

2.
Bioresour Technol ; 101(14): 5123-30, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20304638

RESUMEN

Ash from thermally gasified piggery waste (GA) was treated with sulphuric acid (H(2)SO(4)) using two extraction methods. First different loads (0.39-0.98 kg H(2)SO(4)/kg ash) and concentrations (0.2-2M) were used in 3h extraction. Second, titration of 1:25 (w/w) ash:water suspension was conducted with 4M H(2)SO(4) to determine ash buffer capacity at nine pH steps from 12 to 0.1. Total P and zinc (Zn) dissolution was monitored. Optimal acid load and concentration to dissolve 94% P and 55% Zn from GA was 0.98 kg H(2)SO(4)/kg ash and 0.6M, respectively, which corresponds to acid demand of 19.2 kg H(2)SO(4)/kg P recovered. High concentrations (2M) did not improve P dissolution, but Zn was easier released. Ash buffer capacity was the highest at pH 4 and 0.1, first one due to dissolution of Ca, the second one due to autoprotolysis of water. Acid load had stronger effect on dissolution than concentration in the first method, however in the second; both factors had comparable effect.


Asunto(s)
Fósforo/química , Eliminación de Residuos/métodos , Ácidos Sulfúricos/química , Eliminación de Residuos Líquidos/métodos , Zinc/química , Crianza de Animales Domésticos , Animales , Tampones (Química) , Calor , Concentración de Iones de Hidrógeno , Incineración , Porcinos , Temperatura , Factores de Tiempo
3.
Waste Manag ; 29(9): 2500-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19427189

RESUMEN

In regions with intensive livestock farming, thermal treatment for local energy extraction from the manure and export of the P rich ash as a fertilizer has gained interest. One of the main risks associated with P fertilizers is eutrophication of water bodies. In this study P and K mobility in ash from anaerobically digested, thermally gasified (GA) and incinerated (IA) piggery waste has been tested using water loads ranging from 0.1 to 200 ml g(-1). Leaching of P from soil columns amended with GA was investigated for one P application rate (205 kg P ha(-1) corresponding to 91 mg P kg(-1) soil dry matter) as a function of precipitation rate (9.5 and 2.5 mm h(-1)), soil type (Jyndevad agricultural soil and sand), amount of time elapsed between ash amendment and onset of precipitation (0 and 5 weeks) and compared to leaching from soils amended with a commercial fertilizer (Na(2)HPO(4)). Water soluble P in GA and IA constituted 0.04% and 0.8% of total ash P. Ash amended soil released much less P (0.35% of total P applied in sand) than Na(2)HPO(4) (97% and 12% of total P applied in Jyndevad and sand, respectively).


Asunto(s)
Agricultura , Incineración/métodos , Fósforo/análisis , Potasio/análisis , Contaminantes del Suelo/análisis , Animales , Animales Domésticos , Cinética , Suelo/análisis , Porcinos , Residuos
4.
Waste Manag Res ; 26(4): 347-54, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18727326

RESUMEN

Ash from pig manure treated by combustion and thermal gasification was characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations were measured using energy dispersive X-ray fluorescence analysis. Acid (HNO3, H2SO4) and water-extractable concentrations were also measured both in non-classified ash and in selected ash particle size fractions using flame atomic absorption spectrometry and colorimetric spectrometry. Results indicate that ash from gasified manure contained more water-extractable K in comparison with combusted manure whereas the opposite was the case with respect to P. Heavy metals Ni, Cr and Cd were present in higher concentrations in the fine particle size fractions (< 30 microm of particle diameter), whereas K, P, Zn and Cu exhibited higher concentrations in the coarser particle size fractions (> 30 microm).


Asunto(s)
Alimentos , Incineración , Estiércol , Metales Pesados/análisis , Porcinos , Animales , Gases , Tamaño de la Partícula , Administración de Residuos/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda