Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 122(4): 048002, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768343

RESUMEN

Using a dynamic variant of the Vicsek model, we show that the emergence of disorder from an orderly moving human crowd is a nonequilibrium first-order phase transition. We also show that this transition can be reversed by modifying the dynamics of a few agents, deemed as game changers. Surprisingly, the optimal placement of these game changers is found to be in regions of maximum local crowd speed. The presence of such game changers is effective owing to the discontinuous nature of the underlying phase transition. Thus our generic approach provides strategies to (i) delay crowd crush and (ii) design safe evacuation procedures, two aspects that are of paramount importance in maintaining safety of mass gatherings of people.


Asunto(s)
Aglomeración , Movimiento , Conducta de Elección , Emociones , Humanos , Modelos Teóricos
2.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29602784

RESUMEN

Chocolate Pots hot springs (CP) is a circumneutral-pH Fe-rich geothermal feature located in Yellowstone National Park. Previous Fe(III)-reducing enrichment culture studies with CP sediments identified close relatives of known dissimilatory Fe(III)-reducing bacterial (FeRB) taxa, including Geobacter and Melioribacter However, the abundances and activities of such organisms in the native microbial community are unknown. Here, we used stable isotope probing experiments combined with 16S rRNA gene amplicon and shotgun metagenomic sequencing to gain an understanding of the in situ Fe(III)-reducing microbial community at CP. Fe-Si oxide precipitates collected near the hot spring vent were incubated with unlabeled and 13C-labeled acetate to target active FeRB. We searched reconstructed genomes for homologs of genes involved in known extracellular electron transfer (EET) systems to identify the taxa involved in Fe redox transformations. Known FeRB taxa containing putative EET systems (Geobacter, Ignavibacteria) increased in abundance under acetate-amended conditions, whereas genomes related to Ignavibacterium and Thermodesulfovibrio that contained putative EET systems were recovered from incubations without electron donor. Our results suggest that FeRB play an active role in Fe redox cycling within Fe-Si oxide-rich deposits located at the hot spring vent.IMPORTANCE The identification of past near-surface hydrothermal environments on Mars emphasizes the importance of using modern Earth environments, such as CP, to gain insight into potential Fe-based microbial life on other rocky worlds, as well as ancient Fe-rich Earth ecosystems. By combining stable carbon isotope probing techniques and DNA sequencing technology, we gained insight into the pathways of microbial Fe redox cycling at CP. The results suggest that microbial Fe(III) oxide reduction is prominent in situ, with important implications for the generation of geochemical and stable Fe isotopic signatures of microbial Fe redox metabolism within Fe-rich circumneutral-pH thermal spring environments on Earth and Mars.


Asunto(s)
Bacterias/metabolismo , Respiraderos Hidrotermales/microbiología , Hierro/metabolismo , Microbiota , Bacterias/clasificación , Isótopos , Oxidación-Reducción , Parques Recreativos , ARN Ribosómico 16S/genética
3.
Appl Environ Microbiol ; 80(23): 7244-57, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25239908

RESUMEN

The rhizobial community indigenous to the Okavango region has not yet been characterized. The isolation of indigenous rhizobia can provide a basis for the formulation of a rhizobial inoculant. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Isolates were obtained from nodules of local varieties of the pulses cowpea, Bambara groundnut, peanut, hyacinth bean, and common bean. Ninety-one of them were identified by BOX repetitive element PCR (BOX-PCR) and sequence analyses of the 16S-23S rRNA internally transcribed spacer (ITS) and the recA, glnII, rpoB, and nifH genes. A striking geographical distribution was observed. Bradyrhizobium pachyrhizi dominated at sampling sites in Angola which were characterized by acid soils and a semihumid climate. Isolates from the semiarid sampling sites in Namibia were more diverse, with most of them being related to Bradyrhizobium yuanmingense and Bradyrhizobium daqingense. Host plant specificity was observed only for hyacinth bean, which was nodulated by rhizobia presumably representing yet-undescribed species. Furthermore, the isolates were characterized with respect to their adaptation to high temperatures, drought, and local host plants. The adaptation experiments revealed that the Namibian isolates shared an exceptionally high temperature tolerance, but none of the isolates showed considerable adaptation to drought. Moreover, the isolates' performance on different local hosts showed variable results, with most Namibian isolates inducing better nodulation on peanut and hyacinth bean than the Angolan strains. The local predominance of distinct genotypes implies that indigenous strains may exhibit a better performance in inoculant formulations.


Asunto(s)
Biodiversidad , Bradyrhizobium/clasificación , Bradyrhizobium/aislamiento & purificación , Filogeografía , Nódulos de las Raíces de las Plantas/microbiología , África del Sur del Sahara , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , ARN Polimerasas Dirigidas por ADN , Especificidad del Huésped , Datos de Secuencia Molecular , Plantas/microbiología , Análisis de Secuencia de ADN
4.
Sci Data ; 11(1): 820, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048591

RESUMEN

Tumor organoids are three-dimensional in vitro models which can recapitulate the complex mutational landscape and tissue architecture observed in cancer patients, providing a realistic model for testing novel therapies, including immunotherapies. A significant challenge in organoid research in oncology lies in developing efficient and reliable methods for segmenting organoid images, quantifying organoid growth, regression and response to treatments, as well as predicting the behavior of organoid systems. Up to now, a curated dataset of organoids co-cultured with immune cells is not available. To address this gap, we present a new public dataset, comprising both phase-contrast images of murine and patient-derived tumor organoids of one of the deadliest cancer types, the Pancreatic Ductal Adenocarcinoma, co-cultured with immune cells, and state-of-the-art algorithms for object detection and segmentation. Our dataset, OrganoIDNetData, encompassing 180 images with 33906 organoids, can be a potential common benchmark for different organoids segmentation protocols, moving beyond the current practice of training and testing these algorithms on isolated datasets.


Asunto(s)
Algoritmos , Organoides , Neoplasias Pancreáticas , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Humanos , Ratones , Animales , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Inteligencia Artificial
5.
Microbiome ; 12(1): 68, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570877

RESUMEN

BACKGROUND: The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS: To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION: We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.


Asunto(s)
Archaea , Metano , Archaea/genética , Marcaje Isotópico , Oxidación-Reducción , Metano/metabolismo , Carbono/metabolismo , ADN , Anaerobiosis , Sedimentos Geológicos , Filogenia
6.
Cell Oncol (Dordr) ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805131

RESUMEN

PURPOSE: Pancreatic Ductal Adenocarcinoma (PDAC) remains a challenging disease due to its complex biology and aggressive behavior with an urgent need for efficient therapeutic strategies. To assess therapy response, pre-clinical PDAC organoid-based models in combination with accurate real-time monitoring are required. METHODS: We established stable live-imaging organoid/peripheral blood mononuclear cells (PBMCs) co-cultures and introduced OrganoIDNet, a deep-learning-based algorithm, capable of analyzing bright-field images of murine and human patient-derived PDAC organoids acquired with live-cell imaging. We investigated the response to the chemotherapy gemcitabine in PDAC organoids and the PD-L1 inhibitor Atezolizumab, cultured with or without HLA-matched PBMCs over time. Results obtained with OrganoIDNet were validated with the endpoint proliferation assay CellTiter-Glo. RESULTS: Live cell imaging in combination with OrganoIDNet accurately detected size-specific drug responses of organoids to gemcitabine over time, showing that large organoids were more prone to cytotoxic effects. This approach also allowed distinguishing between healthy and unhealthy status and measuring eccentricity as organoids' reaction to therapy. Furthermore, imaging of a new organoids/PBMCs sandwich-based co-culture enabled longitudinal analysis of organoid responses to Atezolizumab, showing an increased potency of PBMCs tumor-killing in an organoid-individual manner when Atezolizumab was added. CONCLUSION: Optimized PDAC organoid imaging analyzed by OrganoIDNet represents a platform capable of accurately detecting organoid responses to standard PDAC chemotherapy over time. Moreover, organoid/immune cell co-cultures allow monitoring of organoid responses to immunotherapy, offering dynamic insights into treatment behavior within a co-culture setting with PBMCs. This setup holds promise for real-time assessment of immunotherapeutic effects in individual patient-derived PDAC organoids.

7.
Mycoses ; 56(2): 182-6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22931629

RESUMEN

Biofilm formation is implicated as a potential virulence factor in Candida species and carries important clinical repercussions because of their increased resistance to antifungal treatment, ability to withstand host defences and to serve as a reservoir for continuing infections. The present study was undertaken to determine the biofilm production among oral Candida isolates from HIV-positive and HIV-negative individuals from Pune, India. Biofilm formation was determined using the spectrophotometric or microtitre plate method in 182 Candida isolates, of which 154 were from HIV-positive and 28 were from HIV-negative individuals. A total of 63.2% of the Candida isolates were biofilm producers. Significantly increased biofilm forming abilities both qualitatively as well as quantitatively were observed in Candida isolates from HIV-positive individuals (66.2%) compared to isolates from HIV-negative ones (46.4%), (P- 0.041). Eighty-one (59.6%) C. albicans isolates and 34 (73.9%) non -C. albicans Candida (NCAC) showed biofilm positivity. The NCAC showed significantly greater intensity of biofilm formation compared to the C. albicans, P- 0.032. Our results thus show the enhanced biofilm forming abilities of oral Candida isolates from HIV-infected individuals compared to HIV-uninfected ones and highlight the important role played by biofilm formation in the pathogenesis of NCAC isolates.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Biopelículas , Candida/aislamiento & purificación , Candida/fisiología , Candidiasis Bucal/microbiología , Candida/clasificación , Humanos , India
8.
Sci Rep ; 13(1): 733, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639416

RESUMEN

Droplets form a cornerstone of the spatiotemporal organization of biomolecules in cells. These droplets are controlled using physical processes like chemical reactions and imposed gradients, which are costly to simulate using traditional approaches, like solving the Cahn-Hilliard equation. To overcome this challenge, we here present an alternative, efficient method. The main idea is to focus on the relevant degrees of freedom, like droplet positions and sizes. We derive dynamical equations for these quantities using approximate analytical solutions obtained from a sharp interface limit and linearized equations in the bulk phases. We verify our method against fully-resolved simulations and show that it can describe interacting droplets under the influence of chemical reactions and external gradients using only a fraction of the computational costs of traditional methods. Our method can be extended to include other processes in the future and will thus serve as a relevant platform for understanding the dynamics of droplets in cells.

9.
Front Microbiol ; 12: 617280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935987

RESUMEN

Anaerobic methane oxidizing archaea (ANME) mediate anaerobic oxidation of methane (AOM) in marine sediments and are therefore important for controlling atmospheric methane concentrations in the water column and ultimately the atmosphere. Numerous previous studies have revealed that AOM is coupled to the reduction of different electron acceptors such as sulfate, nitrate/nitrite or Fe(III)/Mn(IV). However, the influence of electron acceptor availability on the in situ ANME community composition in sediments remains largely unknown. Here, we investigated the electron acceptor availability and compared the microbial in situ communities of three methane-rich locations offshore the sub-Antarctic island South Georgia, by Illumina sequencing and qPCR of mcrA genes. The methanic zone (MZ) sediments of Royal Trough and Church Trough comprised high sulfide concentrations of up to 4 and 19 mM, respectively. In contrast, those of the Cumberland Bay fjord accounted for relatively high concentrations of dissolved iron (up to 186 µM). Whereas the ANME community in the sulfidic sites Church Trough and Royal Trough mainly comprised members of the ANME-1 clade, the order-level clade "ANME-1-related" (Lever and Teske, 2015) was most abundant in the iron-rich site in Cumberland Bay fjord, indicating that the availability of electron acceptors has a strong selective effect on the ANME community. This study shows that potential electron acceptors for methane oxidation may serve as environmental filters to select for the ANME community composition and adds to a better understanding of the global importance of AOM.

10.
ISME J ; 15(3): 848-861, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33149207

RESUMEN

Asgard is a recently discovered archaeal superphylum, closely linked to the emergence of eukaryotes. Among Asgard archaea, Lokiarchaeota are abundant in marine sediments, but their in situ activities are largely unknown except for Candidatus 'Prometheoarchaeum syntrophicum'. Here, we tracked the activity of Lokiarchaeota in incubations with Helgoland mud area sediments (North Sea) by stable isotope probing (SIP) with organic polymers, 13C-labelled inorganic carbon, fermentation intermediates and proteins. Within the active archaea, we detected members of the Lokiarchaeota class Loki-3, which appeared to mixotrophically participate in the degradation of lignin and humic acids while assimilating CO2, or heterotrophically used lactate. In contrast, members of the Lokiarchaeota class Loki-2 utilized protein and inorganic carbon, and degraded bacterial biomass formed in incubations. Metagenomic analysis revealed pathways for lactate degradation, and involvement in aromatic compound degradation in Loki-3, while the less globally distributed Loki-2 instead rely on protein degradation. We conclude that Lokiarchaeotal subgroups vary in their metabolic capabilities despite overlaps in their genomic equipment, and suggest that these subgroups occupy different ecologic niches in marine sediments.


Asunto(s)
Archaea , Sedimentos Geológicos , Archaea/genética , Metagenoma , Mar del Norte , Filogenia
11.
ISME J ; 15(4): 965-980, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33154547

RESUMEN

Elevated dissolved iron concentrations in the methanic zone are typical geochemical signatures of rapidly accumulating marine sediments. These sediments are often characterized by co-burial of iron oxides with recalcitrant aromatic organic matter of terrigenous origin. Thus far, iron oxides are predicted to either impede organic matter degradation, aiding its preservation, or identified to enhance organic carbon oxidation via direct electron transfer. Here, we investigated the effect of various iron oxide phases with differing crystallinity (magnetite, hematite, and lepidocrocite) during microbial degradation of the aromatic model compound benzoate in methanic sediments. In slurry incubations with magnetite or hematite, concurrent iron reduction, and methanogenesis were stimulated during accelerated benzoate degradation with methanogenesis as the dominant electron sink. In contrast, with lepidocrocite, benzoate degradation, and methanogenesis were inhibited. These observations were reproducible in sediment-free enrichments, even after five successive transfers. Genes involved in the complete degradation of benzoate were identified in multiple metagenome assembled genomes. Four previously unknown benzoate degraders of the genera Thermincola (Peptococcaceae, Firmicutes), Dethiobacter (Syntrophomonadaceae, Firmicutes), Deltaproteobacteria bacteria SG8_13 (Desulfosarcinaceae, Deltaproteobacteria), and Melioribacter (Melioribacteraceae, Chlorobi) were identified from the marine sediment-derived enrichments. Scanning electron microscopy (SEM) and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) images showed the ability of microorganisms to colonize and concurrently reduce magnetite likely stimulated by the observed methanogenic benzoate degradation. These findings explain the possible contribution of organoclastic reduction of iron oxides to the elevated dissolved Fe2+ pool typically observed in methanic zones of rapidly accumulating coastal and continental margin sediments.


Asunto(s)
Sedimentos Geológicos , Hierro , Benzoatos , Compuestos Férricos , Hibridación Fluorescente in Situ , Oxidación-Reducción , Óxidos
12.
Cureus ; 12(7): e9418, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32864246

RESUMEN

It is well known, based on the previous research, that a ketogenic diet leads to an improvement in the lipid profile and decreases cardiovascular risk factors such as hypertension. However, recent studies have also reported increased levels of total cholesterol and low-density lipoprotein cholesterol (LDL-C) as a result of this diet. It has been postulated that this elevation in LDL-C would not likely increase cardiovascular complications due to the large LDL-C particle size. In this case report, we present a case of a rapid increase, followed by a rapid correction of LDL-C, in a patient following a ketogenic diet. A 56-year-old Hispanic female with a past medical history of hypertension and fibromyalgia presented to the outpatient clinic for evaluation of fatigue. She reported that she had been following a strict ketogenic diet along with daily regular exercise for approximately 30-40 days prior to this visit. Her diet consisted of low-carbohydrate vegetables, seafood, avocados, eggs, and coconut oil. The patient's physical exam was unremarkable. At the time of the visit, her BMI was calculated at 28 kg/m2, with a weight loss of approximately six to seven pounds since starting the ketogenic diet. Her fasting lipid profile showed a total cholesterol of 283 mg/dl, LDL-C of 199 mg/dl, high-density lipoprotein cholesterol (HDL-C) of 59 mg/dl, and triglycerides levels of 124 mg/dl. She was instructed to stop the ketogenic diet and to incorporate a balanced diet, which includes a higher amount of carbohydrates and lower fat. She was also started on high-intensity atorvastatin. However, she reported experiencing myalgias soon after initiating atorvastatin; therefore, the medication was switched to rosuvastatin 10 mg at bedtime. During her follow-up appointment, she reported not having consistently taken rosuvastatin due to the concern of worsening myalgias. Her lipid profile, after four weeks of ketogenic diet discontinuation and inconsistent use of statins, showed significant improvement resulting in a total cholesterol level of 190 mg/dl and LDL-C of 106 mg/dl. Statin therapy was discontinued, and the patient maintained optimal LDL-C levels on subsequent testing. This patient showed a rapid increase in LDL-C and total cholesterol after only 30-40 days of the ketogenic diet. Her drastic elevation in LDL-C could also be explained due to the rapid weight loss, as cholesterol in the adipose tissue is known to mobilize as the fat cells shrink. Interestingly, her BMI four weeks after the discontinuation of the ketogenic diet did not change despite a marked improvement in her LDL-C. Therefore, we believe the acute onset and resolution of hyperlipidemia was secondary to the ketogenic diet itself. This study helps to better understand expectations when recommending a ketogenic diet to patients and its consequences. There is currently no statistically significant study that proves this elevation of LDL-C would not increase cardiovascular risks. Furthermore, the necessity for statin therapy in a ketogenic diet-induced hyperlipidemia remains unknown.

13.
Case Rep Infect Dis ; 2020: 8834589, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101744

RESUMEN

We report a case of a spinal epidural abscess (SEA) in a patient without significant risk factors. The patient was treated in an outpatient setting for one week for worsening back pain and subsequently admitted to the hospital for the treatment of sepsis and suspected SEA. An MRI obtained on admission showed an epidural abscess extending from the lower cervical to the upper lumbar region and accompanying paraspinal cervical and psoas abscesses. The patient was successfully treated with antibiotics based on the sensitivity of the surgical cultures received from a needle aspiration of the abscess. SEA has a low incidence; however, the number of cases is consistently rising over the last two decades. The outcome of SEA treatment is related to the duration of the process prior to intuition of the treatment. Patients with no neurological symptoms, or with symptoms lasting less than 36 h, have the best recovery rate. As the typical symptoms of SEA are seen in only 13% of cases, physicians should have a low threshold to order MRI in patients with back pain that is new or changed from the baseline. With the help of CT-guided aspiration for culture analysis, patients can be successfully treated conservatively using antibiotics in cases where neurological signs are absent.

14.
Sci China Life Sci ; 63(6): 886-897, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32201928

RESUMEN

Asgard is an archaeal superphylum that might hold the key to understand the origin of eukaryotes, but its diversity and ecological roles remain poorly understood. Here, we reconstructed 15 metagenomic-assembled genomes from coastal sediments covering most known Asgard archaea and a novel group, which is proposed as a new Asgard phylum named as the "Gerdarchaeota". Genomic analyses predict that Gerdarchaeota are facultative anaerobes in utilizing both organic and inorganic carbon. Unlike their closest relatives Heimdallarchaeota, Gerdarchaeota have genes encoding for cellulase and enzymes involved in the tetrahydromethanopterin-based Wood-Ljungdahl pathway. Transcriptomics showed that most of our identified Asgard archaea are capable of degrading organic matter, including peptides, amino acids and fatty acids, occupying ecological niches in different depths of layers of the sediments. Overall, this study broadens the diversity of the mysterious Asgard archaea and provides evidence for their ecological roles in coastal sediments.


Asunto(s)
Archaea/enzimología , Sedimentos Geológicos/química , Metagenoma , Filogenia , Aminoácidos/metabolismo , Ciclo del Carbono , Ecosistema , Ácidos Grasos/metabolismo , Genómica , Péptidos/metabolismo
15.
Methods Mol Biol ; 2046: 189-206, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31407306

RESUMEN

Methylotrophic methanogenic archaea are an integral part of the carbon cycle in various anaerobic environments. Different from methylotrophic bacteria, methylotrophic methanogens assimilate both, the methyl compound and dissolved inorganic carbon. Here, we present DNA- and RNA-stable isotope probing (SIP) methods involving an effective labeling strategy using 13C-labeled dissolved inorganic carbon (DIC) as carbon source along with methanol as dissimilatory substrate.


Asunto(s)
Archaea/genética , Isótopos de Carbono/análisis , ADN de Archaea/metabolismo , Marcaje Isotópico/métodos , ARN de Archaea/metabolismo , Carbono/metabolismo , Isótopos de Carbono/química , Centrifugación por Gradiente de Densidad , Sondas de ADN , ADN de Archaea/análisis , ADN de Archaea/aislamiento & purificación , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Metano/metabolismo , Metanol , Filogenia , Sondas ARN , ARN de Archaea/análisis , ARN de Archaea/aislamiento & purificación , ARN Ribosómico 16S/genética
16.
ISME J ; 13(8): 2107-2119, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31040382

RESUMEN

Methyl substrates are important compounds for methanogenesis in marine sediments but diversity and carbon utilization by methylotrophic methanogenic archaea have not been clarified. Here, we demonstrate that RNA-stable isotope probing (SIP) requires 13C-labeled bicarbonate as co-substrate for identification of methylotrophic methanogens in sediment samples of the Helgoland mud area, North Sea. Using lipid-SIP, we found that methylotrophic methanogens incorporate 60-86% of dissolved inorganic carbon (DIC) into lipids, and thus considerably more than what can be predicted from known metabolic pathways (~40% contribution). In slurry experiments amended with the marine methylotroph Methanococcoides methylutens, up to 12% of methane was produced from CO2, indicating that CO2-dependent methanogenesis is an alternative methanogenic pathway and suggesting that obligate methylotrophic methanogens grow in fact mixotrophically on methyl compounds and DIC. Although methane formation from methanol is the primary pathway of methanogenesis, the observed high DIC incorporation into lipids is likely linked to CO2-dependent methanogenesis, which was triggered when methane production rates were low. Since methylotrophic methanogenesis rates are much lower in marine sediments than under optimal conditions in pure culture, CO2 conversion to methane is an important but previously overlooked methanogenic process in sediments for methylotrophic methanogens.


Asunto(s)
Dióxido de Carbono/metabolismo , Euryarchaeota/fisiología , Metano/metabolismo , Methanosarcinaceae/fisiología , Biomasa , Carbono/metabolismo , Euryarchaeota/crecimiento & desarrollo , Sedimentos Geológicos , Metanol/metabolismo , Methanosarcinaceae/crecimiento & desarrollo , Mar del Norte
17.
Front Microbiol ; 10: 3041, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010098

RESUMEN

The flux of methane, a potent greenhouse gas, from the seabed is largely controlled by anaerobic oxidation of methane (AOM) coupled to sulfate reduction (S-AOM) in the sulfate methane transition (SMT). S-AOM is estimated to oxidize 90% of the methane produced in marine sediments and is mediated by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria. An additional methane sink, i.e., iron oxide coupled AOM (Fe-AOM), has been suggested to be active in the methanic zone of marine sediments. Geochemical signatures below the SMT such as high dissolved iron, low to undetectable sulfate and high methane concentrations, together with the presence of iron oxides are taken as prerequisites for this process. So far, Fe-AOM has neither been proven in marine sediments nor have the governing key microorganisms been identified. Here, using a multidisciplinary approach, we show that Fe-AOM occurs in iron oxide-rich methanic sediments of the Helgoland Mud Area (North Sea). When sulfate reduction was inhibited, different iron oxides facilitated AOM in long-term sediment slurry incubations but manganese oxide did not. Especially magnetite triggered substantial Fe-AOM activity and caused an enrichment of ANME-2a archaea. Methane oxidation rates of 0.095 ± 0.03 nmol cm-3 d-1 attributable to Fe-AOM were obtained in short-term radiotracer experiments. The decoupling of AOM from sulfate reduction in the methanic zone further corroborated that AOM was iron oxide-driven below the SMT. Thus, our findings prove that Fe-AOM occurs in methanic marine sediments containing mineral-bound ferric iron and is a previously overlooked but likely important component in the global methane budget. This process has the potential to sustain microbial life in the deep biosphere.

18.
Front Microbiol ; 9: 2574, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425692

RESUMEN

Microorganisms can use crystalline iron minerals for iron reduction linked to organic matter degradation or as conduits for direct interspecies electron transfer (mDIET) to syntrophic partners, e.g., methanogens. The environmental conditions that lead either to reduction or conduit use are so far unknown. We investigated microbial community shifts and interactions with crystalline iron minerals (hematite and magnetite) in methanic ferruginous marine sediment incubations during organic matter (glucose) degradation at varying temperatures. Iron reduction rates increased with decreasing temperature from 30°C to 4°C. Both hematite and magnetite facilitated iron reduction at 4°C, demonstrating that microorganisms in the methanic zone of marine sediments can reduce crystalline iron oxides under psychrophilic conditions. Methanogenesis occurred, however, at higher rates with increasing temperature. At 30°C, both hematite and magnetite accelerated methanogenesis onset and maximum process rates. At lower temperatures (10°C and 4°C), hematite could still facilitate methanogenesis but magnetite served more as an electron acceptor for iron reduction than as a conduit. Different temperatures selected for different key microorganisms: at 30°C, members of genus Orenia, Halobacteroidaceae, at 10°C, Photobacterium and the order Clostridiales, and at 4°C Photobacterium and Psychromonas were enriched. Members of the order Desulfuromonadales harboring known dissimilatory iron reducers were also enriched at all temperatures. Our results show that crystalline iron oxides predominant in some natural environments can facilitate electron transfer between microbial communities at psychrophilic temperatures. Furthermore, temperature has a critical role in determining the pathway of crystalline iron oxide utilization in marine sediment shifting from conduction at 30°C to predominantly iron reduction at lower temperatures.

19.
Phys Rev E ; 95(6-1): 062610, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28709325

RESUMEN

We study the collective motion of a dense suspension of active swimmers in a viscous fluid medium. The swimmers are modeled as soft spheres moving in a highly viscous fluid medium. The magnitude of the propelling thrust exerted by each particle is taken to be a constant and the direction is aligned to its velocity. Depending on the magnitude of the exerted thrust, several nonequilibrium steady states are observed. The transitions between the steady states are characterized using the total dissipation as a function of the magnitude of the thrust. The transitions between the nonequilibrium states are characterized by changes in exponent at low thrust values. At high thrust values, hysteretic transitions between ordered and disordered states are observed.

20.
Front Microbiol ; 6: 365, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25983723

RESUMEN

Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and archaea were specifically higher around the peak of dissolved iron in the methanic zone (250-350 cm). The higher copy numbers at these depths were also reflected by the relative sequence abundances of members of the candidate division JS1, methanogenic and Methanohalobium/ANME-3 related archaea. The distribution of these populations was strongly correlated to the profile of pore-water Fe(2+) while that of Desulfobacteraceae corresponded to the pore-water sulfate profile. Furthermore, specific JS1 populations also strongly co-varied with the distribution of Methanosaetaceae in the methanic zone. Our data suggest that the interplay among JS1 bacteria, methanogenic archaea and Methanohalobium/ANME-3-related archaea may be important for iron reduction and methane cycling in deep methanic sediments of the Helgoland mud area and perhaps in other methane-rich depositional environments.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda