Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.544
Filtrar
1.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284547

RESUMEN

The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in Caenorhabditis elegans, Drosophila and rodents, but its mechanism is not well defined. Here, we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril-hypersensitive mutants. We identified a missense mutation that causes a partial loss of function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNA interference promoted dauer larvae formation, suggesting that acn-1 is a daf gene. Captopril-mediated lifespan extension was abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 influence lifespan by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control.


Asunto(s)
Proteínas de Caenorhabditis elegans , Captopril , Animales , Humanos , Ratones , Captopril/farmacología , Captopril/metabolismo , Caenorhabditis elegans/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Envejecimiento , Longevidad/fisiología , Receptor de Insulina/metabolismo , Mutación/genética , Mamíferos/metabolismo
2.
Nature ; 590(7847): 655-659, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33473214

RESUMEN

Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases1,2. Previous studies have defined the enzymes that are required for BIR1-5; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Saccharomyces cerevisiae , Cromosomas Fúngicos/genética , ADN Helicasas/deficiencia , ADN Primasa/metabolismo , ADN de Hongos/biosíntesis , ADN Polimerasa Dirigida por ADN/deficiencia , Inestabilidad Genómica , Cinética , Mutagénesis , Mutación , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Telómero/genética , Factores de Tiempo , Transcripción Genética
3.
Mol Cell ; 76(5): 699-711.e6, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31542296

RESUMEN

Rad52 is a key factor for homologous recombination (HR) in yeast. Rad52 helps assemble Rad51-ssDNA nucleoprotein filaments that catalyze DNA strand exchange, and it mediates single-strand DNA annealing. We find that Rad52 has an even earlier function in HR in restricting DNA double-stranded break ends resection that generates 3' single-stranded DNA (ssDNA) tails. In fission yeast, Exo1 is the primary resection nuclease, with the helicase Rqh1 playing a minor role. We demonstrate that the choice of two extensive resection pathways is regulated by Rad52. In rad52 cells, the resection rate increases from ∼3-5 kb/h up to ∼10-20 kb/h in an Rqh1-dependent manner, while Exo1 becomes dispensable. Budding yeast Rad52 similarly inhibits Sgs1-dependent resection. Single-molecule analysis with purified budding yeast proteins shows that Rad52 competes with Sgs1 for DNA end binding and inhibits Sgs1 translocation along DNA. These results identify a role for Rad52 in limiting ssDNA generated by end resection.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Cinética , Mutación , Dominios Proteicos , Transporte de Proteínas , Proteína Recombinante y Reparadora de ADN Rad52/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
4.
PLoS Biol ; 21(9): e3002280, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37733772

RESUMEN

Animals must integrate sensory cues with their current behavioral context to generate a suitable response. How this integration occurs is poorly understood. Previously, we developed high-throughput methods to probe neural activity in populations of Caenorhabditis elegans and discovered that the animal's mechanosensory processing is rapidly modulated by the animal's locomotion. Specifically, we found that when the worm turns it suppresses its mechanosensory-evoked reversal response. Here, we report that C. elegans use inhibitory feedback from turning-associated neurons to provide this rapid modulation of mechanosensory processing. By performing high-throughput optogenetic perturbations triggered on behavior, we show that turning-associated neurons SAA, RIV, and/or SMB suppress mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch mechanosensory neurons or of any of the interneurons AIZ, RIM, AIB, and AVE during a turn is less likely to evoke a reversal than activation during forward movement. Inhibiting neurons SAA, RIV, and SMB during a turn restores the likelihood with which mechanosensory activation evokes reversals. Separately, activation of premotor interneuron AVA evokes reversals regardless of whether the animal is turning or moving forward. We therefore propose that inhibitory signals from SAA, RIV, and/or SMB gate mechanosensory signals upstream of neuron AVA. We conclude that C. elegans rely on inhibitory feedback from the motor circuit to modulate its response to sensory stimuli on fast timescales. This need for motor signals in sensory processing may explain the ubiquity in many organisms of motor-related neural activity patterns seen across the brain, including in sensory processing areas.


Asunto(s)
Caenorhabditis elegans , Neuronas , Animales , Caenorhabditis elegans/fisiología , Retroalimentación , Neuronas/fisiología , Interneuronas/fisiología , Locomoción/fisiología
5.
Circulation ; 149(15): 1183-1201, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38099436

RESUMEN

BACKGROUND: Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow, and stable flow (s-flow) protects against atherosclerosis by incompletely understood mechanisms. METHODS: Our single-cell RNA-sequencing data using the mouse partial carotid ligation model was reanalyzed, which identified Heart-of-glass 1 (HEG1) as an s-flow-induced gene. HEG1 expression was studied by immunostaining, quantitive polymerase chain reaction, hybridization chain reaction, and Western blot in mouse arteries, human aortic endothelial cells (HAECs), and human coronary arteries. A small interfering RNA-mediated knockdown of HEG1 was used to study its function and signaling mechanisms in HAECs under various flow conditions using a cone-and-plate shear device. We generated endothelial-targeted, tamoxifen-inducible HEG1 knockout (HEG1iECKO) mice. To determine the role of HEG1 in atherosclerosis, HEG1iECKO and littermate-control mice were injected with an adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9] and fed a Western diet to induce hypercholesterolemia either for 2 weeks with partial carotid ligation or 2 months without the surgery. RESULTS: S-flow induced HEG1 expression at the mRNA and protein levels in vivo and in vitro. S-flow stimulated HEG1 protein translocation to the downstream side of HAECs and release into the media, followed by increased messenger RNA and protein expression. HEG1 knockdown prevented s-flow-induced endothelial responses, including monocyte adhesion, permeability, and migration. Mechanistically, HEG1 knockdown prevented s-flow-induced KLF2/4 (Kruppel-like factor 2/4) expression by regulating its intracellular binding partner KRIT1 (Krev interaction trapped protein 1) and the MEKK3-MEK5-ERK5-MEF2 pathway in HAECs. Compared with littermate controls, HEG1iECKO mice exposed to hypercholesterolemia for 2 weeks and partial carotid ligation developed advanced atherosclerotic plaques, featuring increased necrotic core area, thin-capped fibroatheroma, inflammation, and intraplaque hemorrhage. In a conventional Western diet model for 2 months, HEG1iECKO mice also showed an exacerbated atherosclerosis development in the arterial tree in both sexes and the aortic sinus in males but not in females. Moreover, endothelial HEG1 expression was reduced in human coronary arteries with advanced atherosclerotic plaques. CONCLUSIONS: Our findings indicate that HEG1 is a novel mediator of atheroprotective endothelial responses to flow and a potential therapeutic target.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Placa Aterosclerótica , Masculino , Femenino , Humanos , Ratones , Animales , Placa Aterosclerótica/metabolismo , Proproteína Convertasa 9/metabolismo , Células Endoteliales/metabolismo , Hipercolesterolemia/genética , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de la Membrana/metabolismo
6.
Nat Methods ; 19(1): 119-128, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949809

RESUMEN

Due to advances in automated image acquisition and analysis, whole-brain connectomes with 100,000 or more neurons are on the horizon. Proofreading of whole-brain automated reconstructions will require many person-years of effort, due to the huge volumes of data involved. Here we present FlyWire, an online community for proofreading neural circuits in a Drosophila melanogaster brain and explain how its computational and social structures are organized to scale up to whole-brain connectomics. Browser-based three-dimensional interactive segmentation by collaborative editing of a spatially chunked supervoxel graph makes it possible to distribute proofreading to individuals located virtually anywhere in the world. Information in the edit history is programmatically accessible for a variety of uses such as estimating proofreading accuracy or building incentive systems. An open community accelerates proofreading by recruiting more participants and accelerates scientific discovery by requiring information sharing. We demonstrate how FlyWire enables circuit analysis by reconstructing and analyzing the connectome of mechanosensory neurons.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Drosophila melanogaster/fisiología , Imagenología Tridimensional/métodos , Programas Informáticos , Animales , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Gráficos por Computador , Visualización de Datos , Drosophila melanogaster/citología , Neuronas/citología , Neuronas/fisiología
7.
Nat Chem Biol ; 19(12): 1551-1560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932529

RESUMEN

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.


Asunto(s)
Catharanthus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Plantas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Proteínas de Plantas/metabolismo
8.
PLoS Biol ; 20(1): e3001524, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089912

RESUMEN

We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans. The instrument addresses three technical challenges: It delivers targeted illumination to specified regions of the animal's body such as its head or tail; it automatically delivers stimuli triggered upon the animal's behavior; and it achieves high throughput by targeting many animals simultaneously. The instrument was used to optogenetically probe the animal's behavioral response to competing mechanosensory stimuli in the the anterior and posterior gentle touch receptor neurons. Responses to more than 43,418 stimulus events from a range of anterior-posterior intensity combinations were measured. The animal's probability of sprinting forward in response to a mechanosensory stimulus depended on both the anterior and posterior stimulation intensity, while the probability of reversing depended primarily on the anterior stimulation intensity. We also probed the animal's response to mechanosensory stimulation during the onset of turning, a relatively rare behavioral event, by delivering stimuli automatically when the animal began to turn. Using this closed-loop approach, over 9,700 stimulus events were delivered during turning onset at a rate of 9.2 events per worm hour, a greater than 25-fold increase in throughput compared to previous investigations. These measurements validate with greater statistical power previous findings that turning acts to gate mechanosensory evoked reversals. Compared to previous approaches, the current system offers targeted optogenetic stimulation to specific body regions or behaviors with many fold increases in throughput to better constrain quantitative models of sensorimotor processing.


Asunto(s)
Caenorhabditis elegans/fisiología , Ensayos Analíticos de Alto Rendimiento , Mecanotransducción Celular/fisiología , Movimiento/fisiología , Optogenética/métodos , Animales , Conducta Animal/fisiología , Retroalimentación Sensorial/fisiología , Optogenética/instrumentación , Estimulación Luminosa , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología
9.
PLoS Comput Biol ; 20(3): e1011881, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442111

RESUMEN

Antibody-based therapeutics must not undergo chemical modifications that would impair their efficacy or hinder their developability. A commonly used technique to de-risk lead biotherapeutic candidates annotates chemical liability motifs on their sequence. By analyzing sequences from all major sources of data (therapeutics, patents, GenBank, literature, and next-generation sequencing outputs), we find that almost all antibodies contain an average of 3-4 such liability motifs in their paratopes, irrespective of the source dataset. This is in line with the common wisdom that liability motif annotation is over-predictive. Therefore, we have compiled three computational flags to prioritize liability motifs for removal from lead drug candidates: 1. germline, to reflect naturally occurring motifs, 2. therapeutic, reflecting chemical liability motifs found in therapeutic antibodies, and 3. surface, indicative of structural accessibility for chemical modification. We show that these flags annotate approximately 60% of liability motifs as benign, that is, the flagged liabilities have a smaller probability of undergoing degradation as benchmarked on two experimental datasets covering deamidation, isomerization, and oxidation. We combined the liability detection and flags into a tool called Liability Antibody Profiler (LAP), publicly available at lap.naturalantibody.com. We anticipate that LAP will save time and effort in de-risking therapeutic molecules.


Asunto(s)
Anticuerpos , Secuenciación de Nucleótidos de Alto Rendimiento , Anticuerpos/uso terapéutico , Probabilidad
10.
Nature ; 569(7754): 121-125, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31019301

RESUMEN

The turnover of the intestinal epithelium is driven by multipotent LGR5+ crypt-base columnar cells (CBCs) located at the bottom of crypt zones1. However, CBCs are lost following injury, such as irradiation2, but the intestinal epithelium is nevertheless able to recover3. Thus, a second population of quiescent '+4' cells, or reserve stem cells (RSCs), has previously been proposed to regenerate the damaged intestine4-7. Although CBCs and RSCs were thought to be mutually exclusive4,8, subsequent studies have found that LGR5+ CBCs express RSC markers9 and that RSCs were dispensable-whereas LGR5+ cells were essential-for repair of the damaged intestine3. In addition, progenitors of absorptive enterocytes10, secretory cells11-15 and slow cycling LGR5+ cells16 have been shown to contribute to regeneration whereas the transcriptional regulator YAP1, which is important for intestinal regeneration, was suggested to induce a pro-survival phenotype in LGR5+ cells17. Thus, whether cellular plasticity or distinct cell populations are critical for intestinal regeneration remains unknown. Here we applied single-cell RNA sequencing to profile the regenerating mouse intestine and identified a distinct, damage-induced quiescent cell type that we term the revival stem cell (revSC). revSCs are marked by high clusterin expression and are extremely rare under homoeostatic conditions, yet give rise-in a temporal hierarchy-to all the major cell types of the intestine, including LGR5+ CBCs. After intestinal damage by irradiation, targeted ablation of LGR5+ CBCs, or treatment with dextran sodium sulfate, revSCs undergo a YAP1-dependent transient expansion, reconstitute the LGR5+ CBC compartment and are required to regenerate a functional intestine. These studies thus define a unique stem cell that is mobilized by damage to revive the homoeostatic stem cell compartment and regenerate the intestinal epithelium.


Asunto(s)
Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Regeneración/genética , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo , Transcriptoma , Animales , Femenino , Homeostasis , Masculino , Ratones , Ratones Transgénicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Regeneración/fisiología , Análisis de Secuencia de ARN
11.
Mol Ther ; 32(2): 325-339, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38053332

RESUMEN

Upon viral infection of the liver, CD8+ T cell responses may be triggered despite the immune suppressive properties that manifest in this organ. We sought to identify pathways that activate responses to a neoantigen expressed in hepatocytes, using adeno-associated viral (AAV) gene transfer. It was previously established that cooperation between plasmacytoid dendritic cells (pDCs), which sense AAV genomes by Toll-like receptor 9 (TLR9), and conventional DCs promotes cross-priming of capsid-specific CD8+ T cells. Surprisingly, we find local initiation of a CD8+ T cell response against antigen expressed in ∼20% of murine hepatocytes, independent of TLR9 or type I interferons and instead relying on IL-1 receptor 1-MyD88 signaling. Both IL-1α and IL-1ß contribute to this response, which can be blunted by IL-1 blockade. Upon AAV administration, IL-1-producing pDCs infiltrate the liver and co-cluster with XCR1+ DCs, CD8+ T cells, and Kupffer cells. Analogous events were observed following coagulation factor VIII gene transfer in hemophilia A mice. Therefore, pDCs have alternative means of promoting anti-viral T cell responses and participate in intrahepatic immune cell networks similar to those that form in lymphoid organs. Combined TLR9 and IL-1 blockade may broadly prevent CD8+ T responses against AAV capsid and transgene product.


Asunto(s)
Linfocitos T CD8-positivos , Factor 88 de Diferenciación Mieloide , Animales , Ratones , Proteínas de la Cápside , Células Dendríticas , Interleucina-1/metabolismo , Hígado/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
12.
Ann Intern Med ; 177(2): 238-245, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38346308

RESUMEN

Stroke is a major cause of morbidity, mortality, and disability. The American Heart Association/American Stroke Association recently published updated guidelines on secondary stroke prevention. In these rounds, 2 vascular neurologists use the case of Mr. S, a 75-year-old man with a history of 2 strokes, to discuss and debate questions in the guideline concerning intensity of atrial fibrillation monitoring in embolic stroke of undetermined source, diagnosis and management of moderate symptomatic carotid stenosis, and therapeutic strategies for recurrent embolic stroke of undetermined source in the setting of guideline-concordant therapy.


Asunto(s)
Accidente Cerebrovascular Embólico , Accidente Cerebrovascular , Rondas de Enseñanza , Masculino , Humanos , Anciano , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/prevención & control
13.
Proc Natl Acad Sci U S A ; 119(18): e2200143119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476525

RESUMEN

There is currently no effective treatment for pancreatic ductal adenocarcinoma (PDAC). While palliative chemotherapy offers a survival benefit to most patients, nearly all will eventually progress on treatment and long-term survivability remains poor. Given the lack of subsequent line treatment options, in this study, we sought to identify novel strategies to prevent, delay, or overcome resistance to gemcitabine, one of the most widely used medications in PDAC. Using a combination of single-cell RNA sequencing and high-throughput proteomic analysis, we identified a subset of gemcitabine-resistant tumor cells enriched for calcium/calmodulin signaling. Pharmacologic inhibition of calcium-dependent calmodulin activation led to the rapid loss of drug-resistant phenotypes in vitro, which additional single-cell RNA sequencing identified was due to impaired activation of the RAS/ERK signaling pathway. Consistent with these observations, calcium chelation or depletion of calcium in the culture media also impaired ERK activation in gemcitabine-resistant cells, and restored therapeutic responses to gemcitabine in vitro. We observed similar results using calcium channel blockers (CCBs) such as amlodipine, which inhibited prosurvival ERK signaling in vitro and markedly enhanced therapeutic responses to gemcitabine in both orthotopic xenografts and transgenic models of PDAC. Combined, these results offer insight into a potential means of gemcitabine resistance and suggest that select CCBs may provide a clinical benefit to PDAC patients receiving gemcitabine-based chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Amlodipino/farmacología , Amlodipino/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Calmodulina , Desoxicitidina/análogos & derivados , Humanos , Neoplasias Pancreáticas/patología , Estados Unidos , Gemcitabina , Neoplasias Pancreáticas
14.
Proc Natl Acad Sci U S A ; 119(38): e2205454119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095190

RESUMEN

Trastuzumab is the first-line therapy for human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but often patients develop acquired resistance. Although other agents are in clinical use to treat trastuzumab-resistant (TR) breast cancer; still, the patients develop recurrent metastatic disease. One of the primary mechanisms of acquired resistance is the shedding/loss of the HER2 extracellular domain, where trastuzumab binds. We envisioned any new agent acting downstream of the HER2 should overcome trastuzumab resistance. The mixed lineage kinase 3 (MLK3) activation by trastuzumab is necessary for promoting cell death in HER2+ breast cancer. We designed nanoparticles loaded with MLK3 agonist ceramide (PPP-CNP) and tested their efficacy in sensitizing TR cell lines, patient-derived organoids, and patient-derived xenograft (PDX). The PPP-CNP activated MLK3, its downstream JNK kinase activity, and down-regulated AKT pathway signaling in TR cell lines and PDX. The activation of MLK3 and down-regulation of AKT signaling by PPP-CNP induced cell death and inhibited cellular proliferation in TR cells and PDX. The apoptosis in TR cells was dependent on increased CD70 protein expression and caspase-9 and caspase-3 activities by PPP-CNP. The PPP-CNP treatment alike increased the expression of CD70, CD27, cleaved caspase-9, and caspase-3 with a concurrent tumor burden reduction of TR PDX. Moreover, the expressions of CD70 and ceramide levels were lower in TR than sensitive HER2+ human breast tumors. Our in vitro and preclinical animal models suggest that activating the MLK3-CD70 axis by the PPP-CNP could sensitize/overcome trastuzumab resistance in HER2+ breast cancer.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias de la Mama , Ligando CD27 , Resistencia a Antineoplásicos , Quinasas Quinasa Quinasa PAM , Nanopartículas , Trastuzumab , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Ligando CD27/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Ceramidas/química , Femenino , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/análisis , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
15.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35830864

RESUMEN

Antibodies are versatile molecular binders with an established and growing role as therapeutics. Computational approaches to developing and designing these molecules are being increasingly used to complement traditional lab-based processes. Nowadays, in silico methods fill multiple elements of the discovery stage, such as characterizing antibody-antigen interactions and identifying developability liabilities. Recently, computational methods tackling such problems have begun to follow machine learning paradigms, in many cases deep learning specifically. This paradigm shift offers improvements in established areas such as structure or binding prediction and opens up new possibilities such as language-based modeling of antibody repertoires or machine-learning-based generation of novel sequences. In this review, we critically examine the recent developments in (deep) machine learning approaches to therapeutic antibody design with implications for fully computational antibody design.


Asunto(s)
Aprendizaje Profundo , Anticuerpos/uso terapéutico , Estudios de Factibilidad , Aprendizaje Automático
16.
PLoS Pathog ; 18(12): e1010994, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508467

RESUMEN

The emergence of new variants of SARS-CoV-2 necessitates unremitting efforts to discover novel therapeutic monoclonal antibodies (mAbs). Here, we report an extremely potent mAb named P4A2 that can neutralize all the circulating variants of concern (VOCs) with high efficiency, including the highly transmissible Omicron. The crystal structure of the P4A2 Fab:RBD complex revealed that the residues of the RBD that interact with P4A2 are a part of the ACE2-receptor-binding motif and are not mutated in any of the VOCs. The pan coronavirus pseudotyped neutralization assay confirmed that the P4A2 mAb is specific for SARS-CoV-2 and its VOCs. Passive administration of P4A2 to K18-hACE2 transgenic mice conferred protection, both prophylactically and therapeutically, against challenge with VOCs. Overall, our data shows that, the P4A2 mAb has immense therapeutic potential to neutralize the current circulating VOCs. Due to the overlap between the P4A2 epitope and ACE2 binding site on spike-RBD, P4A2 may also be highly effective against a number of future variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/química , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/terapia , Ratones Transgénicos , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
17.
Cell Immunol ; 399-400: 104811, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38518686

RESUMEN

Helicobacter pylori-associated stomach infection is a leading cause of gastric ulcer and related cancer. H. pylori modulates the functions of infiltrated immune cells to survive the killing by reactive oxygen and nitrogen species (ROS and RNS) produced by these cells. Uncontrolled immune responses further produce excess ROS and RNS which lead to mucosal damage. The persistent oxidative stress is a major cause of gastric cancer. H. pylori regulates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), nitric oxide synthase 2 (NOS2), and polyamines to control ROS and RNS release through lesser-known mechanisms. ROS and RNS produced by these pathways differentiate macrophages and T cells from protective to inflammatory phenotype. Pathogens-associated molecular patterns (PAMPs) induced ROS activates nuclear oligomerization domain (NOD), leucine rich repeats (LRR) and pyrin domain-containing protein 3 (NLRP3) inflammasome for the release of pro-inflammatory cytokines. This study evaluates the role of H. pylori secreted concentrated proteins (HPSCP) related oxidative stress role in NLRP3 inflammasome activation and macrophage differentiation. To perceive the role of ROS/RNS, THP-1 and AGS cells were treated with 10 µM diphenyleneiodonium (DPI), 50 µM salicyl hydroxamic acid (SHX), 5 µM Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP), which are specific inhibitors of NADPH oxidase (NOX), Myeloperoxidase (MPO), and mitochondrial oxidative phosphorylation respectively. Cells were also treated with 10 µM of NOS2 inhibitor l-NMMA and 10 µM of N-acetyl cysteine (NAC), a free radical scavenger·H2O2 (100 µM) treated and untreated cells were used as positive controls and negative control respectively. The expression of gp91phox (NOX2), NOS2, NLRP3, CD86 and CD163 was analyzed through fluorescent microscopy. THP-1 macrophages growth was unaffected whereas the gastric epithelial AGS cells proliferated in response to higher concentration of HPSCP. ROS and myeloperoxidase (MPO) level increased in THP-1 cells and nitric oxide (NO) and lipid peroxidation significantly decreased in AGS cells. gp91phox expression was unchanged, whereas NOS2 and NLRP3 downregulated in response to HPSCP, but increased after inhibition of NO, ROS and MPO in THP-1 cells. HPSCP upregulated the expression of M1 and M2 macrophage markers, CD86 and CD163 respectively, which was decreased after the inhibition of ROS. This study concludes that there are multiple pathways which are generating ROS during H. pylori infection which further regulates other cellular processes. NO is closely associated with MPO and inhibition of NLRP3 inflammasome. The low levels of NO and MPO regulates gastrointestinal tract homeostasis and overcomes the inflammatory response of NLRP3. The ROS also plays crucial role in macrophage polarization hence alter the immune responses duing H. pylori pathogenesis.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Inflamasomas , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Helicobacter pylori/inmunología , Especies Reactivas de Oxígeno/metabolismo , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/metabolismo , Inflamasomas/metabolismo , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Proteínas Bacterianas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Células THP-1 , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Diferenciación Celular/inmunología
18.
New Phytol ; 243(3): 1172-1189, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853429

RESUMEN

IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Potexvirus , Arabidopsis/virología , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Potexvirus/fisiología , Regulación de la Expresión Génica de las Plantas , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Mutación/genética , Tunicamicina/farmacología , Proteínas de la Membrana , Proteínas Quinasas
19.
J Org Chem ; 89(1): 761-769, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38145929

RESUMEN

A mild and metal-free strategy for the construction of trifluoromethylated pyrazolo[4,3-b]indoles through the reaction of N-substituted 3-nitroindoles with trifluorodiazoethane is reported. This operationally simple transformation involves a [3 + 2] cycloaddition of trifluorodiazoethane with 3-nitroindole, followed by the elimination of the nitro group to furnish pyrazole-fused indoles. The synthetic utility of this method is further demonstrated by applying it to other heterocycles, such as 3-nitrobenzothiophene and 2-nitrobenzofuran.

20.
Org Biomol Chem ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946460

RESUMEN

The palladium-catalysed regioselective C-H chalcogenation of benzoxazines with disulfides and diselenides in air has been described. In this protocol, palladium acetate serves as the catalyst in conjunction with copper as an oxidizing agent. Through this approach, a wide array of sulfenylation and selenylation reactions of benzomorpholines have been effected, yielding results ranging from good to excellent. Thus, the established procedure demonstrates superb regioselectivity and a strong tolerance towards various functional groups and is suitable for gram-scale synthesis. Additionally, this synthetic approach offers a practical and convenient pathway for late-stage functionalization leading to the Rosenmund-von Braun reaction.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda