Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Virol ; 96(18): e0133722, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36069551

RESUMEN

COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Vacunas Combinadas , Estomatitis Vesicular , Aminoácidos/genética , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Cricetinae , Glicoproteínas/genética , Glicoproteínas/inmunología , Humanos , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Ratones , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Combinadas/inmunología , Vacunas Sintéticas/genética , Vesiculovirus/inmunología
2.
J Immunol ; 203(4): 964-971, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243088

RESUMEN

NK cells are key innate immune cells that play critical roles in host defense. Although NK cells have been shown to regulate immunity to some infectious diseases, their role in immunity to Trypanosoma congolense has not been investigated. NK cells are vital sources of IFN-γ and TNF-α; two key cytokines that are known to play important roles in resistance to African trypanosomes. In this article, we show that infection with T. congolense leads to increased levels of activated and functional NK cells in multiple tissue compartments. Systemic depletion of NK cells with anti-NK1.1 mAb led to increased parasitemia, which was accompanied by significant reduction in IFN-γ production by immune cells in the spleens and liver of infected mice. Strikingly, infected NFIL3-/- mice (which genetically lack NK cell development and function) on the normally resistant background were highly susceptible to T. congolense infection. These mice developed fulminating and uncontrolled parasitemia and died significantly earlier (13 ± 1 d) than their wild-type control mice (106 ± 26 d). The enhanced susceptibility of NFIL3-/- mice to infection was accompanied by significantly impaired cytokine (IFN-γ and TNF-α) response by CD3+ T cells in the spleens and liver. Adoptive transfer of NK cells into NFIL3-/- mice before infection rescued them from acute death in a perforin-dependent manner. Collectively, these studies show that NK cells are critical for optimal resistance to T. congolense, and its deficiency leads to enhanced susceptibility in infected mice.


Asunto(s)
Células Asesinas Naturales/inmunología , Tripanosomiasis Africana/inmunología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trypanosoma congolense/inmunología
3.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498725

RESUMEN

Dendritic cells (DC) connect the innate and adaptive arms of the immune system and carry out numerous roles that are significant in the context of viral disease. Their functions include the control of inflammatory responses, the promotion of tolerance, cross-presentation, immune cell recruitment and the production of antiviral cytokines. Based primarily on the available literature that characterizes the behaviour of many DC subsets during Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19), we speculated possible mechanisms through which DC could contribute to COVID-19 immune responses, such as dissemination of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to lymph nodes, mounting dysfunctional inteferon responses and T cell immunity in patients. We highlighted gaps of knowledge in our understanding of DC in COVID-19 pathogenesis and discussed current pre-clinical development of therapies for COVID-19.


Asunto(s)
COVID-19/inmunología , Células Dendríticas/inmunología , SARS-CoV-2/inmunología , Inmunidad Adaptativa , Animales , COVID-19/patología , COVID-19/terapia , Células Dendríticas/patología , Humanos , Inmunidad Innata , Linfocitos T/inmunología
4.
Mol Cell Biochem ; 443(1-2): 193-204, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29188535

RESUMEN

c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.


Asunto(s)
Senescencia Celular , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Epitelio Pigmentado de la Retina/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Transformada , Proteínas de Unión al ADN , Células Epiteliales/citología , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas de Unión al ARN , Epitelio Pigmentado de la Retina/citología , Factores de Tiempo
5.
Int J Mol Sci ; 18(11)2017 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-29113093

RESUMEN

Semaphorin-3E (Sema-3E) is a member of a large family of proteins originally identified as axon guidance cues in neural development. It is expressed in different cell types, such as immune cells, cancer cells, neural cells, and epithelial cells. Subsequently, dys-regulation of Sema-3E expression has been reported in various biological processes that range from cancers to autoimmune and allergic diseases. Recent work in our laboratories revealed a critical immunoregulatory role of Sema-3E in experimental allergic asthma. We further speculate possible immune modulatory function(s) of Sema-3E on natural killer (NK) cells.


Asunto(s)
Células Asesinas Naturales/metabolismo , Semaforina-3A/metabolismo , Animales , Humanos , Semaforina-3A/química , Semaforina-3A/genética , Transducción de Señal
6.
J Biol Chem ; 290(9): 5256-66, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25586186

RESUMEN

CD40 expression on the surface of B lymphocytes is essential for their biological function and fate decision. The engagement of CD40 with its cognate ligand, CD154, leads to a sequence of cellular events in B lymphocytes, including CD40 cytoplasmic translocation, a temporal and spatial organization of effector molecules, and a cascade of CD40-induced signal transduction. The JLP scaffold protein was expressed in murine B lymphocytes. Using B lymphocytes from jlp-deficient mice, we observed that JLP deficiency resulted in defective CD40 internalization upon CD154/CD40 engagement. Examination of interactions and co-localization among CD40, JLP, dynein, and Rab5 in B lymphocytes suggested that CD40 internalization is a process of JLP-mediated vesicle transportation that depends on Rab5 and dynein. JLP deficiency also diminished CD40-dependent activation of MAPK and JNK, but not NF-κB. Inhibiting vesicle transportation from the direction of cell periphery to the cell center by a dynein inhibitor (ciliobrevin D) impaired both CD154-induced CD40 internalization and CD40-dependent MAPK activities in B lymphocytes. Collectively, our data demonstrate a novel role of the JLP scaffold protein in the bridging of CD154-triggered CD40 internalization and CD40-dependent signaling in splenic B lymphocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos B/metabolismo , Antígenos CD40/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Ligando de CD40/metabolismo , Células Cultivadas , Dineínas/metabolismo , Endocitosis , Femenino , Citometría de Flujo , Células HEK293 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones Noqueados , Microscopía Confocal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Unión Proteica , Interferencia de ARN , Bazo/citología , Proteínas de Unión al GTP rab5/metabolismo
7.
Biochim Biophys Acta ; 1853(10 Pt A): 2444-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26151339

RESUMEN

Alternative splicing contributes greatly to the proteomic diversity of metazoans. Protein arginine methyltransferase 5 (PRMT5) methylates arginines of Golgi components and other factors exerting diverse effects on cell growth/differentiation, but the underlying molecular basis for its subcellular distribution and diverse roles has not been fully understood. Here we show the detailed properties of an evolutionarily emerged splice variant of human PRMT5 (PRMT5S) that is distinct from the original isoform (PRMT5L). The isoforms are differentially expressed among mammalian cells and tissues. The PRMT5S is distributed all over the cell but PRMT5L mainly colocalizes with Giantin, a Golgi marker. PRMT5 knockdown led to an enlarged Giantin pattern, which was prevented by the expression of either isoform. Rescuing PRMT5S also increased the percentage of cells with an interphase Giantin pattern compacted at one end of the nucleus, consistent with its cell cycle-arresting effect, while rescuing PRMT5L increased that of the mitotic Giantin patterns of dynamically fragmented structures. Moreover, the isoforms are differentially expressed during neuronal or dendritic cell differentiation, and their ectopic expression showed an opposite effect on dendritic cell differentiation. Furthermore, besides their differential regulation of gene expression, both isoforms also similarly regulate over a thousand genes particularly those involved in apoptosis and differentiation. Taking these properties together, we propose that their differential expression and subcellular localization contribute to spatial and temporal regulation of arginine methylation and gene expression to exert different effects. The novel PRMT5S likely contributes to the observed diverse effects of PRMT5 in cells.


Asunto(s)
Empalme Alternativo/fisiología , Diferenciación Celular/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Aparato de Golgi/enzimología , Proteína-Arginina N-Metiltransferasas/biosíntesis , Aparato de Golgi/genética , Proteínas de la Matriz de Golgi , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Proteína-Arginina N-Metiltransferasas/genética
8.
Int J Cancer ; 139(1): 122-9, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26888626

RESUMEN

CD3ζ has emerged as a clinically important immunological marker in head and neck squamous cell carcinoma (HNSCC) with reduced level of expression reported in both tumor infiltrating lymphocytes and peripheral blood lymphocytes. In this prospective study (power = 0.99, α = 0.05), CD3ζ expression was compared in 47 HNSCC patients and 53 controls using standardized flow cytometric method. There was no statistical difference in the percentages of the CD3 ε+ T-cell subset present in the peripheral blood mononuclear cells of the HNSCC patients and the healthy controls; however, T cells from the HNSCC patients produced a significantly weaker IFN-γ response in comparison to the healthy controls, when they were stimulated by the recall viral CEF peptide antigen. All patients were followed up for at least 3 years with a median follow-up of 45 months. Levels of CD3ζ-chain expression were measured at 117 follow-up visits at six-month intervals. Receiver operating characteristic curve identified the optimal cut off as a 12% increase in post treatment CD3ζ-chain expression from the baseline levels to confirm absence of HNSCC with the area under curve of 0.81 (95% CI = 0.68-0.94) for predicting absence of HNSCC. The specificity, sensitivity and positive predictive value were 81.25% 79.21% and 97.56%, respectively. Three-year disease specific survival (DSS) was significantly lower (p = 0.007) at 63.2% for patients who showed <12% increase in CD3ζ-chain level as compared to 96.2% for patients who had ≥12% increase. Our results indicate that the change in CD3ζ-chain expression from the baseline is an independent predictor of residual and recurrent HNSCC.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Complejo CD3/biosíntesis , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeza y Cuello/genética , Adulto , Anciano , Biomarcadores de Tumor/genética , Complejo CD3/genética , Carcinoma de Células Escamosas/patología , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/patología , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Persona de Mediana Edad , Carcinoma de Células Escamosas de Cabeza y Cuello
9.
Biochim Biophys Acta ; 1839(7): 537-45, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24844182

RESUMEN

Finely tuned differential expression of alternative splice variants contributes to important physiological processes such as the fine-tuning of electrical firing or hearing frequencies; yet the underlying molecular basis for the expression control is not clear. The inclusion levels of four depolarization-regulated alternative exons were measured by RT-PCR in GH3 pituitary cells under different conditions of stimulation and/or RNA interference of splicing factors. The usage of the exons was reduced by membrane depolarization to various extents and was differentially modulated by the knock-down of splicing factors hnRNP L, L-like, I (PTBP1) or K or their combinations. A spectrum of each exon's level was produced under six knock-down conditions and was significantly shifted by depolarization. When all these conditions were considered together, a more refined or expanded spectrum of exon usage was obtained for each of the four exons. As a proof of principle for the molecular basis of the fine-tuning of exon usage, we show in the cases of hnRNP L and LL that their differential effects through the same element or different combinations of RNA sequences by the same factor hnRNP L are critical. The results thus demonstrate that the combined effect of varying extracellular stimuli and intracellular factors/RNA sequences refines or expands the spectra of endogenous exon usage, likely contributing to the fine-tuning of cellular properties.


Asunto(s)
Empalme Alternativo/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo L/genética , Empalme del ARN/genética , Exones/genética , Células HEK293 , Células HeLa , Humanos , Interferencia de ARN
10.
Eur J Immunol ; 44(9): 2737-48, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24954649

RESUMEN

Migration and localization of NK cells into peripheral tissues are tightly regulated under normal and pathological conditions. The physiological importance of NK cell-DC crosstalk has been well documented. However, the ways in which DCs regulate the migratory properties of NK cells (such as chemotaxis, chemokinesis, chemo-repulsion) are not fully defined in vitro. Here, we employed a microfluidic platform to examine, at the single-cell level, C57BL/6 NK-cell migrations in a stable chemical gradient. We observed that soluble factors released by the immature and LPS-activated mature DCs induced a high level of chemotactic movement of IL-2-activated NK cells in vitro. We confirmed these findings in a standard trans-well migration assay, and identified CXCR3 as a key receptor on the NK cells that mediated the migration. More interestingly, we revealed a novel function of granulocyte macrophage colony-stimulating factor in repulsing NK-cell migrations. The future uses of such microfluidic device in the systematic evaluations of NK-cell migratory responses in NK cell-DC crosstalk will provide new insights into the development of DC-based NK-cell therapies against tumor and infections.


Asunto(s)
Comunicación Celular/inmunología , Movimiento Celular/inmunología , Células Dendríticas/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Animales , Antineoplásicos/farmacología , Comunicación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Dendríticas/citología , Interleucina-2/farmacología , Células Asesinas Naturales/citología , Lipopolisacáridos/farmacología , Técnicas Analíticas Microfluídicas
11.
PLoS One ; 19(8): e0309868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39213301

RESUMEN

Dendritic cells (DCs) are pivotal in regulating allergic asthma. Our research has shown that the absence of Sema3E worsens asthma symptoms in acute and chronic asthma models. However, the specific role of PlexinD1 in these processes, particularly in DCs, remains unclear. This study investigates the role of PlexinD1 in CD11c+ DCs using a house dust mite (HDM) model of asthma. We generated CD11c+ DC-specific PlexinD1 knockout (CD11cPLXND1 KO) mice and subjected them, alongside wild-type controls (PLXND1fl/fl), to an HDM allergen protocol. Airway hyperresponsiveness (AHR) was measured using FlexiVent, and immune cell populations were analyzed via flow cytometry. Cytokine levels and immunoglobulin concentrations were assessed using mesoscale and ELISA, while collagen deposition and mucus production were examined through Sirius-red and periodic acid Schiff (PAS) staining respectively. Our results indicate that CD11cPLXND1 KO mice exhibit significantly exacerbated AHR, characterized by increased airway resistance and tissue elastance. Enhanced mucus production and collagen gene expression were observed in these mice compared to wild-type counterparts. Flow cytometry revealed higher CD11c+ MHCIIhigh CD11b+ cell recruitment into the lungs, and elevated total and HDM-specific serum IgE levels in CD11cPLXND1 KO mice. Mechanistically, co-cultures of B cells with DCs from CD11cPLXND1 KO mice showed significantly increased IgE production compared to wild-type mice.These findings highlight the critical regulatory role of the plexinD1 signaling pathway in CD11c+ DCs in modulating asthma features.


Asunto(s)
Asma , Antígeno CD11c , Células Dendríticas , Modelos Animales de Enfermedad , Inmunoglobulina E , Ratones Noqueados , Moco , Animales , Asma/inmunología , Asma/metabolismo , Asma/patología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Ratones , Antígeno CD11c/metabolismo , Moco/metabolismo , Pyroglyphidae/inmunología , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/metabolismo , Alérgenos/inmunología , Ratones Endogámicos C57BL , Glicoproteínas de Membrana , Péptidos y Proteínas de Señalización Intracelular
12.
J Biol Chem ; 287(27): 22709-16, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22570490

RESUMEN

Molecular mechanisms of gene regulation underlying the activity-dependent long term changes of cellular electrical properties, such as those during memory, are largely unknown. We have shown that alternative splicing can be dynamically regulated in response to membrane depolarization and Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) activation, through special CaM kinase responsive RNA elements. However, proteins that mediate this regulation and how they are affected by CaMKIV are not known. Here we show that the regulation of the stress axis-regulated exon of the Slo1 potassium channel transcripts by membrane depolarization requires a highly conserved CaMKIV target serine (Ser-513) of the heterogeneous ribonucleoprotein L. Ser-513 phosphorylation within the RNA recognition motif 4 enhanced heterogeneous ribonucleoprotein L interaction with the CaMKIV-responsive RNA element 1 of stress axis-regulated exon and inhibited binding of the large subunit of the U2 auxiliary factor U2AF65. Both of these activities were abolished by a S513A mutation. Thus, through Ser-513, membrane depolarization/calcium signaling controls a critical spliceosomal assembly step to regulate the variant subunit composition of potassium channels.


Asunto(s)
Empalme Alternativo/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Potenciales de la Membrana/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Exones/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo L/genética , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fosforilación/fisiología , Hipófisis/citología , Ratas , Ribonucleoproteínas/metabolismo , Serina/metabolismo , Factor de Empalme U2AF
13.
Vaccines (Basel) ; 11(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37766083

RESUMEN

COVID-19 and influenza both cause enormous disease burdens, and vaccines are the primary measures for their control. Since these viral diseases are transmitted through the mucosal surface of the respiratory tract, developing an effective and convenient mucosal vaccine should be a high priority. We previously reported a recombinant vesicular stomatitis virus (rVSV)-based bivalent vaccine (v-EM2/SPΔC1Delta) that protects animals from both SARS-CoV-2 and influenza viruses via intramuscular and intranasal immunization. Here, we further investigated the immune response induced by oral immunization with this vaccine and its protective efficacy in mice. The results demonstrated that the oral delivery, like the intranasal route, elicited strong and protective systemic immune responses against SARS-CoV-2 and influenza A virus. This included high levels of neutralizing antibodies (NAbs) against SARS-CoV-2, as well as strong anti-SARS-CoV-2 spike protein (SP) antibody-dependent cellular cytotoxicity (ADCC) and anti-influenza M2 ADCC responses in mice sera. Furthermore, it provided efficient protection against challenge with influenza H1N1 virus in a mouse model, with a 100% survival rate and a significantly low lung viral load of influenza virus. All these findings provide substantial evidence for the effectiveness of oral immunization with the rVSV bivalent vaccine.

14.
Mol Cancer ; 11: 18, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22452792

RESUMEN

BACKGROUND: HLTF (Helicase-like Transcription Factor) is a DNA helicase protein homologous to the SWI/SNF family involved in the maintenance of genomic stability and the regulation of gene expression. HLTF has also been found to be frequently inactivated by promoter hypermethylation in human colon cancers. Whether this epigenetic event is required for intestinal carcinogenesis is unknown. RESULTS: To address the role of loss of HLTF function in the development of intestinal cancer, we generated Hltf deficient mice. These mutant mice showed normal development, and did not develop intestinal tumors, indicating that loss of Hltf function by itself is insufficient to induce the formation of intestinal cancer. On the Apcmin/+ mutant background, Hltf- deficiency was found to significantly increase the formation of intestinal adenocarcinoma and colon cancers. Cytogenetic analysis of colon tumor cells from Hltf-/-/Apcmin/+ mice revealed a high incidence of gross chromosomal instabilities, including Robertsonian fusions, chromosomal fragments and aneuploidy. None of these genetic alterations were observed in the colon tumor cells derived from Apcmin/+ mice. Increased tumor growth and genomic instability was also demonstrated in HCT116 human colon cancer cells in which HLTF expression was significantly decreased. CONCLUSION: Taken together, our results demonstrate that loss of HLTF function promotes the malignant transformation of intestinal or colonic adenomas to carcinomas by inducing genomic instability. Our findings highly suggest that epigenetic inactivation of HLTF, as found in most human colon cancers, could play an important role in the progression of colon tumors to malignant cancer.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neoplasias Intestinales/metabolismo , Factores de Transcripción/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Northern Blotting , Western Blotting , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Proteínas de Unión al ADN/genética , Genotipo , Células HCT116 , Humanos , Inmunohistoquímica , Neoplasias Intestinales/genética , Ratones , Factores de Transcripción/genética
15.
Nucleic Acids Res ; 38(10): 3196-208, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20129940

RESUMEN

Upon activation of the ERK and p38 MAPK pathways, the MSK1/2-mediated nucleosomal response, including H3 phosphorylation at serine 28 or 10, is coupled with the induction of immediate-early (IE) gene transcription. The outcome of this response, varying with the stimuli and cellular contexts, ranges from neoplastic transformation to neuronal synaptic plasticity. Here, we used sequential co-immunoprecipitation assays and sequential chromatin immunoprecipitation (ChIP) assays on mouse fibroblast 10T1/2 and MSK1 knockdown 10T1/2 cells to show that H3 serine 28 and 10 phosphorylation leads to promoter remodeling. MSK1, in complexes with phospho-serine adaptor 14-3-3 proteins and BRG1 the ATPase subunit of the SWI/SNF remodeler, is recruited to the promoter of target genes by transcription factors such as Elk-1 or NF-kappaB. Following MSK1-mediated H3 phosphorylation, BRG1 associates with the promoter of target genes via 14-3-3 proteins, which act as scaffolds. The recruited SWI/SNF remodels nucleosomes at the promoter of IE genes enabling the binding of transcription factors like JUN and the onset of transcription.


Asunto(s)
Ensamble y Desensamble de Cromatina , Genes Inmediatos-Precoces , Histonas/metabolismo , Regiones Promotoras Genéticas , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas 14-3-3/metabolismo , Acetilación , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnicas de Inactivación de Genes , Histonas/química , Isoquinolinas/farmacología , Sistema de Señalización de MAP Quinasas , Ratones , Nucleosomas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Serina/metabolismo , Sulfonamidas/farmacología , Transcripción Genética
16.
Biochim Biophys Acta ; 1803(4): 452-67, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20045437

RESUMEN

Statins inhibit 3-hydroxy-3-methyl-glutarylcoenzyme CoA (HMG-CoA) reductase, the proximal enzyme for cholesterol biosynthesis. They exhibit pleiotropic effects and are linked to health benefits for diseases including cancer and lung disease. Understanding their mechanism of action could point to new therapies, thus we investigated the response of primary cultured human airway mesenchymal cells, which play an effector role in asthma and chronic obstructive lung disease (COPD), to simvastatin exposure. Simvastatin induced apoptosis involving caspase-9, -3 and -7, but not caspase-8 in airway smooth muscle cells and fibroblasts. HMG-CoA inhibition did not alter cellular cholesterol content but did abrogate de novo cholesterol synthesis. Pro-apoptotic effects were prevented by exogenous mevalonate, geranylgeranyl pyrophosphate and farnesyl pyrophosphate, downstream products of HMG-CoA. Simvastatin increased expression of Bax, oligomerization of Bax and Bak, and expression of BH3-only p53-dependent genes, PUMA and NOXA. Inhibition of p53 and silencing of p53 unregulated modulator of apoptosis (PUMA) expression partly counteracted simvastatin-induced cell death, suggesting a role for p53-independent mechanisms. Simvastatin did not induce mitochondrial release of cytochrome c, but did promote release of inhibitor of apoptosis (IAP) proteins, Smac and Omi. Simvastatin also inhibited mitochondrial fission with the loss of mitochondrial Drp1, an essential component of mitochondrial fission machinery. Thus, simvastatin activates novel apoptosis pathways in lung mesenchymal cells involving p53, IAP inhibitor release, and disruption of mitochondrial fission.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Citocromos c/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pulmón/patología , Proteínas Mitocondriales/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Serina Endopeptidasas/metabolismo , Simvastatina/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Western Blotting , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Colesterol/metabolismo , Fibroblastos/efectos de los fármacos , Serina Peptidasa A2 que Requiere Temperaturas Altas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Pulmón/metabolismo , Mesodermo/citología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
17.
J Virol ; 84(17): 8650-63, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20554775

RESUMEN

HIV-1 employs the cellular nuclear import machinery to actively transport its preintegration complex (PIC) into the nucleus for integration of the viral DNA. Several viral karyophilic proteins and cellular import factors have been suggested to contribute to HIV-1 PIC nuclear import and replication. However, how HIV interacts with different cellular machineries to ensure efficient nuclear import of its preintegration complex in dividing and nondividing cells is still not fully understood. In this study, we have investigated different importin alpha (Impalpha) family members for their impacts on HIV-1 replication, and we demonstrate that short hairpin RNA (shRNA)-mediated Impalpha3 knockdown (KD) significantly impaired HIV infection in HeLa cells, CD4(+) C8166 T cells, and primary macrophages. Moreover, quantitative real-time PCR analysis revealed that Impalpha3-KD resulted in significantly reduced levels of viral 2-long-terminal repeat (2-LTR) circles but had no effect on HIV reverse transcription. All of these data indicate an important role for Impalpha3 in HIV nuclear import. In an attempt to understand how Impalpha3 participates in HIV nuclear import and replication, we first demonstrated that the HIV-1 karyophilic protein integrase (IN) was able to interact with Impalpha3 both in a 293T cell expression system and in HIV-infected CD4(+) C8166 T cells. Deletion analysis suggested that a region (amino acids [aa] 250 to 270) in the C-terminal domain of IN is involved in this viral-cellular protein interaction. Overall, this study demonstrates for the first time that Impalpha3 is an HIV integrase-interacting cofactor that is required for efficient HIV-1 nuclear import and replication in both dividing and nondividing cells.


Asunto(s)
Núcleo Celular/metabolismo , Infecciones por VIH/metabolismo , Integrasa de VIH/metabolismo , VIH-1/enzimología , Replicación Viral , alfa Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular , Infecciones por VIH/genética , Infecciones por VIH/virología , Integrasa de VIH/genética , VIH-1/genética , VIH-1/fisiología , Células HeLa , Humanos , alfa Carioferinas/genética
18.
J Virol ; 84(14): 6923-34, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20484510

RESUMEN

Redirecting the tropism of viral vectors enables specific transduction of selected cells by direct administration of vectors. We previously developed targeting lentiviral vectors by pseudotyping with modified Sindbis virus envelope proteins. These modified Sindbis virus envelope proteins have mutations in their original receptor-binding regions to eliminate their natural tropisms, and they are conjugated with targeting proteins, including antibodies and peptides, to confer their tropisms on target cells. We investigated whether our targeting vectors interact with DC-SIGN, which traps many types of viruses and gene therapy vectors by binding to the N-glycans of their envelope proteins. We found that these vectors do not interact with DC-SIGN. When these vectors were produced in the presence of deoxymannojirimycin, which alters the structures of N-glycans from complex to high mannose, these vectors used DC-SIGN as their receptor. Genetic analysis demonstrated that the N-glycans at E2 amino acid (aa) 196 and E1 aa 139 mediate binding to DC-SIGN, which supports the results of a previous report of cryoelectron microscopy analysis. In addition, we investigated whether modification of the N-glycan structures could activate serum complement activity, possibly by the lectin pathway of complement activation. DC-SIGN-targeted transduction occurs in the presence of human serum complement, demonstrating that high-mannose structure N-glycans of the envelope proteins do not activate human serum complement. These results indicate that the strategy of redirecting viral vectors according to alterations of their N-glycan structures would enable the vectors to target specific cells types expressing particular types of lectins.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Vectores Genéticos , Lectinas Tipo C/metabolismo , Lentivirus , Polisacáridos/metabolismo , Receptores de Superficie Celular/metabolismo , Virus Sindbis/metabolismo , Proteínas del Envoltorio Viral , Animales , Conformación de Carbohidratos , Secuencia de Carbohidratos , Moléculas de Adhesión Celular/genética , Línea Celular , Proteínas del Sistema Complemento/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Lectinas Tipo C/genética , Lentivirus/genética , Lentivirus/metabolismo , Datos de Secuencia Molecular , Polisacáridos/química , Polisacáridos/genética , Receptores de Superficie Celular/genética , Virus Sindbis/genética , Transducción Genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
19.
Blood ; 114(21): 4703-12, 2009 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19786618

RESUMEN

Tandem pleckstrin homology domain proteins (TAPPs) are recruited to the plasma membrane via binding to phosphoinositides produced by phosphoinositide 3-kinases (PI3Ks). Whereas PI3Ks are critical for B-cell activation, the functions of TAPP proteins in B cells are unknown. We have identified 40 potential interaction partners of TAPP2 in B cells, including proteins involved in cytoskeletal rearrangement, signal transduction and endocytic trafficking. The association of TAPP2 with the cytoskeletal proteins utrophin and syntrophin was confirmed by Western blotting. We found that TAPP2, syntrophin, and utrophin are coexpressed in normal human B cells and B-chronic lymphocytic leukemia (B-CLL) cells. TAPP2 and syntrophin expression in B-CLL was variable from patient to patient, with significantly higher expression in the more aggressive disease subset identified by zeta-chain-associated protein kinase of 70 kDa (ZAP70) expression and unmutated immunoglobulin heavy chain (IgH) genes. We examined whether TAPP can regulate cell adhesion, a known function of utrophin/syntrophin in other cell types. Expression of membrane-targeted TAPP2 enhanced B-cell adhesion to fibronectin and laminin, whereas PH domain-mutant TAPP2 inhibited adhesion. siRNA knockdown of TAPP2 or utrophin, or treatment with PI3K inhibitors, significantly inhibited adhesion. These findings identify TAPP2 as a novel link between PI3K signaling and the cytoskeleton with potential relevance for leukemia progression.


Asunto(s)
Linfocitos B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucemia de Células B/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Utrofina/metabolismo , Western Blotting , Adhesión Celular/fisiología , Línea Celular Tumoral , Citoesqueleto/metabolismo , Progresión de la Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , ARN Interferente Pequeño
20.
J Immunol ; 182(6): 3357-65, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19265112

RESUMEN

IL-17A has been shown to be expressed at higher levels in respiratory secretions from asthmatics and to correlate with airway hyperresponsiveness. Although these studies raise the possibility that IL-17A may influence allergic disease, the mechanism remains unknown. We previously demonstrated that IL-17A mediates CC chemokine (CCL11) production from human airway smooth muscle (ASM) cells. In this study, we demonstrate that STAT3 activation is critical in IL-17A-mediated CCL11 expression in ASM cells. IL-17A mediated a rapid phosphorylation of STAT3 but not STAT6 or STAT5 in ASM cells. Interestingly, transient transfection with wild-type or mutated CCL11 promoter constructs showed that IL-17A-mediated CCL11 expression relies on the STAT6 binding site. However, STAT3 but not STAT6 in vivo binding to the CCL11 promoter was detected following IL-17A stimulation of ASM cells. Overexpression of DN STAT3 (STAT3beta) abolishes IL-17A-induced CCL11 promoter activity. This effect was not observed with STAT6 DN or the STAT3 mutant at Ser(727). Interestingly, disruption of STAT3 activity with the SH2 domain binding peptide, but not with control peptide, results in a significant reduction of IL-17A-mediated STAT3 phosphorylation and CCL11 promoter activity. IL-17A-mediated CCL11 promoter activity and mRNA were significantly diminished in STAT3- but not STAT6-silenced ASM cells. Finally, IL-17A-induced STAT3 phosphorylation was sensitive to pharmacological inhibitors of JAK2 and ERK1/2. Taken together, our data provide the first evidence of IL-17A-mediated gene expression via STAT3 in ASM cells. Collectively, our results raise the possibility that the IL-17A/STAT3 signaling pathway may play a crucial role in airway inflammatory responses.


Asunto(s)
Bronquios/inmunología , Bronquios/metabolismo , Quimiocina CCL11/biosíntesis , Interleucina-17/fisiología , Factor de Transcripción STAT3/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/inmunología , Bronquios/citología , Células Cultivadas , Quimiocina CCL11/genética , Regulación de la Expresión Génica/inmunología , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/inmunología , Unión Proteica/inmunología , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda