Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Environ Toxicol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177411

RESUMEN

Phenethyl isothiocyanate (PEITC), a natural product, exists in biological activities, including anticancer activity in many human cancer cells. No information shows that PEITC affects DNA damage in human retinoblastoma (RB) cells in vitro. In this study, the aim of experiments was to determine whether PEITC decreased total viable cell number or not by inducing protein expressions involved in DNA damage and repair in Y79 RB cells in vitro. Total cell viability was measured by PI exclusion assay, and PEITC reduced the total Y79 viable cell numbers in a dose-dependent manner. DNA condensation and DNA impairment were conducted by DAPI staining and comet assays, respectively, in Y79 cells. The findings show that PEITC induced DNA condensation dose-dependently based on the brighter fluorescence of cell nuclei stained by DAPI staining. PEITC-induced DNA damage showed a more extended DNA migration smears than that of the control, which was performed by a comet assay. Western blotting was performed to measure the protein expressions involved in DNA damage and repair, which showed that PEITC at 2.5-10 µM increased NRF2, HO-1, SOD (Mn), and catalase; however, it decreased SOD (Cu/Zn) except 10 µM PEITC treatment, and decreased glutathione, which were associated with oxidative stress. Furthermore, PEITC increased DNA-PK, MDC1, H2A.XpSer139, ATMpSer1981, p53, p53pSer15, PARP, HSP70, and HSP90, but decreased TOPIIα, TOPIIß, and MDM2pSer166 that were associated with DNA damage and repair mechanism in Y79 cells. The examination from confocal laser microscopy shows that PEITC increased H2A.XpSer139 and p53pSer15, and decreased glutathione and TOPIIα in Y79 cells. In conclusion, the cytotoxic effects of PEITC on reducing the number of viable cells may be due to the induction of DNA damage and the alteration of DNA repair proteins in Y79 cells in vitro.

2.
Environ Toxicol ; 39(3): 1303-1314, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37966020

RESUMEN

Allyl isothiocyanate (AITC) is abundant in cruciferous vegetables and it present pharmacological activity including anticancer activity in many types of human cancer cells in vitro and in vivo. Currently, no available information to show AITC affecting DNA damage and repair-associated protein expression in human gastric cancer cells. Therefore, in the present studies, we investigated AITC-induced cytotoxic effects on human gastric cancer in AGS and SNU-1 cells whether or not via the induction of DNA damage and affected DNA damage and repair associated poteins expressions in vitro. Cell viability and morphological changes were assayed by flow cytometer and phase contrast microscopy, respectively, the results indicated AITC induced cell morphological changes and decreased total viable cells in AGS and SNU-1 cells in a dose-dependently. AITC induced DNA condensation and damage in a dose-dependently which based on the cell nuclei was stained by 4', 6-diamidino-2-phenylindole present in AGS and SNU-1 cells. DNA damage and repair associated proteins expression in AGS and SNU-1 cells were measured by Western blotting. The results indicated AITC decreased nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), glutathione, and catalase, but increased superoxide dismutase (SOD (Cu/Zn)), and nitric oxide synthase (iNOS) in AGS cells, however, in SNU-1 cells are increased HO-1. AITC increased DNA-dependent protein kinase (DNA-PK), phosphorylation of gamma H2A histone family member X on Ser139 (γH2AXpSer139 ), and heat shock protein 90 (HSP90) in AGS cells. AITC increased DNA-PK, mediator of DNA damage checkpoint protein 1 (MDC1), γH2AXpSer139 , topoisomerase II alpha (TOPIIα), topoisomerase II beta (TOPIIß), HSP90, and heat shock protein 70 (HSP70) in SNU-1 cells. AITC increased p53, p53pSer15 , and p21 but decreased murine double minute 2 (MDM2)pSer166 and O6 -methylguanine-DNA methyltransferase (MGMT) in AGS cells; however, it has a similar effect of AITC except increased ataxia telangiectasia and Rad3 -related protein (ATR)pSer428 , checkpoint kinase 1 (CHK1), and checkpoint kinase 2 (CHK2) in SNU-1 cells. Apparently, both cell responses to AITC are different, nonetheless, all of these observations suggest that AITC inhibits the growth of gastric cancer cells may through induction off DNA damage in vitro.


Asunto(s)
Neoplasias Gástricas , Proteína p53 Supresora de Tumor , Humanos , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Daño del ADN , Isotiocianatos/farmacología , Reparación del ADN , ADN , Línea Celular Tumoral
3.
Mol Cell Probes ; 67: 101890, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36581146

RESUMEN

Adulteration by Bacopa monnieri (BM) in Portulaca oleracea (PO) plants frequently occurs; it decreases the efficacy of traditional Chinese medicine (TCM) and leads to fraud in the herbal marketplace. In this study, a diagnostic PCR assay was established for the rapid authentication of PO and BM in the herbal market. The sequence divergences in internal transcribed spacer 2 (ITS2) between PO and its adulterant species were used to design diagnostic PCR primers. The specific designed primer sets were evaluated and show that the diagnostic PCR assay can be used to verify the authenticity of PO and BM. The detection limits of the primer set for PO and BM identification were 10 pg and 1 pg, respectively. The reactivity of diagnostic PCR was 0.1% PO genomic DNA and 0.01% BM genomic DNA in the test sample during DNA amplification. In addition, multiplex PCR (mPCR) for PO and BM identification was also established. The samples were more susceptible to the effect of steaming in authentication by singleplex PCR and mPCR than boiling and drying treatment. Furthermore, commercial samples from the market were used to demonstrate the applicability of the developed diagnostic PCR for PO authentication and diagnose BM adulteration, and the investigation found that approximately 72.2% (13/18) of PO plants in the herbal market were adulterated. In conclusion, the diagnostic PCR assay was successfully developed and its specificity, sensitivity and reactivity for PO and BM authentication were proven. These developed PCR-based molecular methods can be applied as an identification tool for PO authenticity and can be practically applied for inspection of BM adulteration in the herbal market in the future.


Asunto(s)
Plantas Medicinales , Portulaca , Plantas Medicinales/genética , Portulaca/genética , Reacción en Cadena de la Polimerasa Multiplex , ADN Espaciador Ribosómico/genética , ADN de Plantas/análisis , ADN de Plantas/genética
4.
Environ Toxicol ; 36(3): 320-327, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33044769

RESUMEN

Ganoderma is one of the common medicinal mushrooms in traditional Chinese medicine. Previous researches have unveiled the multifaceted biological activity of Ganoderma extract. Ganoderma tsugae has been investigated the potential on curing prostate, colon, lung, epidermoid, breast and ovarian cancers, but not including endometrial cancer. Endometrial cancer is a gynecological malignant tumor with serious drug resistance problem in clinical cancer treatment. This study aimed to demonstrate the first study of Ganoderma on treating endometrial cancer. The Ganoderma tsugae ethanol extract (GTEE) could suppress the proliferation of endometrial cancer cells HEC-1-A, KLE, and AN3 CA. GTEE also induced G1/S phase arrest and mitochondria-mediated apoptosis in endometrial cancer cells. Furthermore, the Akt signaling pathway could be suppressed by GTEE. Therefore, our results suggest for the first time that GTEE has the potential to be an adjuvant therapeutic agent in the treatment of endometrial cancer.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Neoplasias Endometriales/tratamiento farmacológico , Ganoderma , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Humanos , Medicina Tradicional China , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Int J Mol Sci ; 22(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071132

RESUMEN

Demethoxycurcumin (DMC), a derivate of curcumin, has been shown to induce apoptotic cell death in human glioblastoma multiforme GBM 8401 cells via cell cycle arrest and induction of cell apoptosis. However, there is no report showing DMC suppresses glioblastoma multiforme cells in vivo. In the present study, we investigated the effects of DMC on GBM8401 cells in vivo. At first, we established a luciferase-expressing stable clone named GBM 8401/luc2. Second, mice were inoculated subcutaneously with GBM 8401/luc2 cells to generate a xenograft tumor mice model. After inoculation, tumor volume reached 100-120 mm3, and all mice were randomly divided into three groups: Group I was treated with 110 µL phosphate-buffered solution (PBS) containing 0.1% dimethyl sulfoxide, Group II with 30 mg/kg of DMC, and Group III with 60 mg/kg of DMC. Mice from each group were given the oral treatment of DMC by gavage for 21 days. The body weight and tumor volume were recorded every 3 days. DMC significantly decreased the tumor volumes, and 60 mg/kg treatment showed a higher decrease in tumor volumes than that of 30 mg/kg, However, DMC did not affect the body weights. The photons emitted from mice tumors were detected with Xenogen IVIS imaging system, DMC at both doses decreased the total photon flux and 60 mg/kg treatment of DMC has low total photon flux than that of 30 mg/kg. The tumor volumes and weights in 60 mg/kg treatment of DMC were lower than that of 30 mg/kg. Immunohistochemical analysis was used to measure protein expression of tumors and results showed that DMC treatment led to lightly staining with anti-Bcl-2 and -XIAP and 60 mg/kg treatment of DMC has lighter staining with anti-Bcl-2 and -XIAP than that of 30 mg/kg. The higher dose (60 mg/kg) of DMC has higher signals of cleaved-caspase-3 than that of the lower dose (30 mg/kg). Furthermore, the hematoxylin and eosin (H&E) staining of liver tissues showed no significant difference between DMC-treated and control-groups. Overall, these observations showed that DMC suppressed tumor properties in vivo and DMC may be used against human glioblastoma multiforme in the future.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Diarilheptanoides/uso terapéutico , Glioblastoma/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/toxicidad , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Diarilheptanoides/toxicidad , Genes Reporteros , Glioblastoma/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Desnudos , Proteínas de Neoplasias/análisis , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Distribución Aleatoria , Carga Tumoral , Proteína Inhibidora de la Apoptosis Ligada a X/análisis , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/análisis
6.
Molecules ; 26(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885686

RESUMEN

Tetrandrine (TET), a bisbenzylisoquinoline (BBI) alkaloid, is isolated from the plant Stephania tetrandra S. Moore and has a wide range of biological activity, including anticancer properties in vitro and in vivo. At first, we established a luciferase-expressing stable clone that was named GBM 8401/luc2 cells. Herein, the primary results indicated that TET reduced the total cell viability and induced cell apoptosis in GBM 8401/luc2 human glioblastoma cells. However, there is no available information showing that TET suppresses glioblastoma cells in vivo. Thus, we investigated the effects and mechanisms of TET on a GBM 8401/luc2 cell-generated tumor in vivo. After the tumor volume reached 100-120 mm3 in subcutaneously xenografted nude mice, all of the mice were randomly divided into three groups: Group I was treated with phosphate-buffered solution (PBS) containing 0.1% dimethyl sulfoxide, Group II with 25 mg/kg of TET, and Group III with 50 mg/kg of TET. All mice were given the oral treatment of PBS or TET by gavage for 21 days, and the body weight and tumor volumes were recorded every 5 days. After treatment, individual tumors, kidneys, livers, and spleens were isolated from each group. The results showed that TET did not affect the body weights, but it significantly decreased the tumor volumes. The TET treatment at 50 mg/kg had a two-fold decrease in tumor volumes than that at 25 mg/kg when compared to the control. TET decreased the total photon flux, and treatment with TET at 50 mg/kg had a lower total photon flux than that at 25 mg/kg, as measured by a Xenogen IVIS imaging system. Moreover, the higher TET treatment had lower tumor volumes and weights than those of the lower dose. The apoptosis-associated protein expression in the tumor section was examined by immunohistochemical analysis, and the results showed that TET treatment reduced the levels of c-FLIP, MCL-1, and XIAP but increased the signals of cleaved-caspase-3, -8, and -9. Furthermore, the hematoxylin and eosin (H & E) staining of kidney, liver, and spleen tissues showed no significant difference between the TET-treated and control groups. Overall, these observations demonstrated that TET suppressed subcutaneous tumor growth in a nude-mice model via the induction of cell apoptosis.


Asunto(s)
Bencilisoquinolinas/farmacología , Encéfalo/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Stephania tetrandra/química , Animales , Apoptosis/efectos de los fármacos , Bencilisoquinolinas/química , Encéfalo/patología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Caspasa 3/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Humanos , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Transducción de Señal , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Environ Toxicol ; 35(7): 774-782, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32061153

RESUMEN

This study aims to investigate the protective effects of the Bauhinia championii (BC) against ischemia/reperfusion (I/R)-induced injury in an isolated heart model. Langendorff-perfused C57BL/6JNarl mice hearts were performed with 30 minutes ischemia and 60 minutes reperfusion by left anterior descending artery ligation. Before reperfusion, boiling water extracts of BC (10 mg/L) was pretreated for 15 minutes. During reperfusion, BC significantly decreased the occurrence of ventricular arrhythmias by lead II electrocardiogram (ECG). Electrophysiological effect of BC was further determined in isolated ventricular myocytes by whole-cell patch clamp technique. The underlying mechanism may result from its Na+ channel blocking activity characterized with reduced rise slope of action potential and Na+ current density. Moreover, BC dramatically reduced I/R-caused infarct size, which was accessed by 2,3,5-triphenyltetrazolium chloride (TTC) assay. Since BC decreased I/R-induced myoglobin release and oxidation of Ca2+ -calmodulin-dependent protein kinase, inhibition of myocardial necroptosis may account for the protective effects of BC on myocytes lose. This study indicated that BC may prevent I/R induced ventricular arrhythmias and myocyte death by blocking Na+ channels and decreasing necroptosis, respectively. Since most of the available antiarrhythmic remedies have unwanted adverse actions, BC could be a novel candidate for the treatment of myocardial infarction and ventricular arrhythmia.


Asunto(s)
Bauhinia/química , Corazón/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Extractos Vegetales/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Electrocardiografía , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Necroptosis/efectos de los fármacos , Técnicas de Placa-Clamp , Componentes Aéreos de las Plantas/química , Extractos Vegetales/aislamiento & purificación , Bloqueadores de los Canales de Sodio/aislamiento & purificación , Canales de Sodio/metabolismo
8.
Environ Toxicol ; 35(9): 911-921, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32270916

RESUMEN

Leukemia is one of the major diseases causing cancer-related deaths in the young population, and its cure rate is unsatisfying with side effects on patients. Fluorouracil (5-FU) is currently used as an anticancer drug for leukemia patients. Casticin, a natural polymethoxyflavone, exerts anticancer activity against many human cancer cell lines in vitro, but no other reports show 5-FU combined with casticin increased the mouse leukemia cell apoptosis in vitro. Herein, the antileukemia activity of 5-FU combined with casticin in WEHI-3 mouse leukemia cells was investigated in vitro. Treatment of two-drug combination had a higher decrease in cell viability and a higher increase in apoptotic cell death, the level of DNA condensation, and the length of comet tail than that of 5-FU or casticin treatment alone in WEHI-3 cells. In addition, the two-drug combination has a greater production rate of reactive oxygen species but a lower level of Ca2+ release and mitochondrial membrane potential (ΔΨm ) than that of 5-FU alone. Combined drugs also induced higher caspase-3 and caspase-8 activities than that of casticin alone and higher caspase-9 activity than that of 5-FU or casticin alone at 48 hours treatment. Furthermore, 5-FU combined with casticin has a higher expression of Cu/Zn superoxide dismutase (SOD [Cu/Zn]) and lower catalase than that of 5-FU or casticin treatment alone. The combined treatment has higher levels of Bax, Endo G, and cytochrome C of proapoptotic proteins than that of casticin alone and induced lower levels of B-cell lymphoma 2 (BCL-2) and BCL-X of antiapoptotic proteins than that of 5-FU or casticin only. Furthermore, the combined treatment had a higher expression of cleaved poly (ADP-ribose) polymerase (PARP) than that of casticin only. Based on these findings, we may suggest that 5-FU combined with casticin treatment increased apoptotic cell death in WEHI-3 mouse leukemia cells that may undergo mitochondria and caspases signaling pathways in vitro.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Flavonoides/farmacología , Fluorouracilo/farmacología , Animales , Antineoplásicos/administración & dosificación , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Sinergismo Farmacológico , Flavonoides/administración & dosificación , Fluorouracilo/administración & dosificación , Humanos , Leucemia/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Environ Toxicol ; 34(4): 434-442, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30578657

RESUMEN

Numerous evidences have shown that chrysin induced cytotoxic effects via induced cell cycle arrest and induction of cell apoptosis in human cancer cell lines, however, no information showed that chrysin inhibited skin cancer cell migration and invasion. In this study, we investigated anti-metastasis mechanisms of chrysin in human melanoma cancer A375.S2 cells in vitro. Under sub-lethal concentrations of chrysin (0, 5, 10, and 15 µM) which inhibits cell mobility, migration and invasion of A375.S2 cells that were assayed by wound healing and Transwell filter. That chrysin inhibited MMP-2 activity in A375.S2 cells was investigated by gelatin zymography assay. Western blotting was used to examine protein expression and results indicated that chrysin inhibited the expression of GRB2, SOS-1, PKC, p-AKT (Thr308), NF-κBp65, and NF-κBp50 at 24 and 48 hours treatment, but only at 10-15 µM of chrysin decreased Ras, PI3K, p-c-Jun, and Snail only at 48 hours treatment and only decrease p-AKT(Ser473) at 24 hours treatment. Furthermore, chrysin (5-15 µM) decreased the expression of uPA, N-cadherin and MMP-1 at 24 and 48 hours treatment but only decreased MMP-2 and VEGF at 48 hours treatment at 10-15 µM and 5-15 µM of chrysin, respectively, however, increased E-cadherin at 5-15 µM treatment. Results of confocal laser microscopy systems indicated that chrysin inhibited expression of NF-κBp65 in A375.S2 cells. Based on these observations, we suggest that chrysin can be used in anti-metastasis of human melanoma cells in the future.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Flavonoides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/patología , FN-kappa B/metabolismo , Neoplasias Cutáneas/patología , Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Melanoma/metabolismo , Invasividad Neoplásica , Neoplasias Cutáneas/metabolismo
10.
Environ Toxicol ; 34(4): 364-374, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30549224

RESUMEN

Tetrandrine (TET) has been reported to induce anti-cancer activity in many human cancer cells and also to inhibit cancer cell migration and invasion. However, there are no reports to show TET inhibits cell migration and invasion in human brain glioblastoma multiforme GBM 8401 cells. In this study, we investigated the anti-metastasis effects of TET on GBM 8401 cells in vitro. Under sub-lethal concentrations (from 1, 5 up to 10 µM), TET significantly inhibited cell mobility, migration and invasion of GBM 8401 cells that were assayed by wound healing and Transwell assays. Gelatin zymography assay showed that TET inhibited MMP-2 activity in GBM 8401 cells. Western blotting results indicated that TET inhibited several key metastasis-related proteins, such as p-EGFR(Tyr1068) , SOS-1, GRB2, Ras, p-AKT(Ser473) and p-AKT(Thr308) , NF-κB-p65, Snail, E-cadherin, N-cadherin, NF-κB, MMP-2 and MMP-9 that were significant reduction at 24 and 48 hours treatment by TET. TET reduced MAPK signaling associated proteins such as p-JNK1/2 and p-c-Jun in GBM 8401 cells. The electrophoretic mobility shift (EMSA) assay was used to investigate NF-κB and DNA binding was reduced by TET in a dose-dependently. Based on these findings, we suggested that TET could be used in anti-metastasis of human brain glioblastoma multiforme GBM 8401 cells in the future.


Asunto(s)
Anticarcinógenos/farmacología , Bencilisoquinolinas/farmacología , Neoplasias Encefálicas/patología , Movimiento Celular/efectos de los fármacos , Glioblastoma/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioblastoma/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Invasividad Neoplásica , Transducción de Señal
11.
Int J Mol Sci ; 20(18)2019 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-31500366

RESUMEN

Resistance to the current therapies is the main clinical challenge in the treatment of lethal metastatic prostate cancer (mPCa). Developing novel therapeutic approaches with effective regimes and minimal side effects for this fatal disease remain a priority in prostate cancer study. In the present study, we demonstrated that a traditional Chinese medicine, quality-assured Ganoderma tsugae ethanol extract (GTEE), significantly suppressed cell growth and metastatic capability and caused cell cycle arrest through decreasing expression of cyclins in mPCa cells, PC-3 and DU145 cells. GTEE also induced caspase-dependent apoptosis in mPCa cells. We further showed the potent therapeutic efficacy of GTEE by inhibiting subcutaneous PC-3 tumor growth in a xenograft model. The in vitro and in vivo efficacies on mPCa cells were due to blockade of the PI3K/Akt and MAPK/ERK signaling pathways associated with cancer cell growth, survival and apoptosis. These preclinical data provide the molecular basis for a new potential therapeutic approach toward the treatment of lethal prostate cancer progression.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Ganoderma/química , Animales , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Medicina Tradicional China , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Environ Toxicol ; 33(7): 770-788, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29667321

RESUMEN

Prostate cancer is the most common male reproductive system cancer. The prevalence of prostate cancer in Europe and the United States is higher than that in the Asian region. However, the treatment of prostate cancer remains unsatisfactory. Psoralea corylifolia has been used to cure this disease as Chinese medicine in the Asian region. In this study, we analyzed the components of ethanol extraction of unprepared and prepared P. corylifolia by HPLC. Psoralen and isopsoralen content from the prepared P. corylifolia is twofold higher than that from unprepared, so we use the prepared extraction in this study. However, the effects of the ethanol extraction of P. corylifolia (PCE) on PC-3 human prostate cancer cells remain unclear. PC-3 cells were treated with PCE for different time periods and cells were examined for cell morphological change and total viable cells by using contrast phase microscopy and flow cytometer, respectively. Results indicated that PCE induced cell morphological changes and cytotoxic effect in PC-3 cells in dose-dependent manners. PCE induced chromatin condensation of PC-3 cells dose-dependently. PCE also induced apoptosis and autophagy in PC-3 by western blotting and acridine orange (AO) staining, respectively. Furthermore, a complementary DNA microarray analysis demonstrated that PCE treatment led to 944 genes upregulation and 872 genes downregulation. For example, the DNA damage-associated gene DNA-damage-inducible transcript 3 (DDIT 3) had a 62.1-fold upregulation and CDK1 2.68-fold downregulation. The differential genes were classified according to the Gene Ontology. Furthermore, GeneGo software was used for the key genes involved and their possible interaction pathways. Those genes were affected by P. corylifolia, which provided information for the understanding of the antiprostate cancer mechanism at the genetic level and provide additional targets for the treatments of human prostate cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Extractos Vegetales/farmacología , Psoralea/química , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Etanol/química , Ficusina/química , Ficusina/aislamiento & purificación , Ficusina/farmacología , Furocumarinas/química , Furocumarinas/aislamiento & purificación , Furocumarinas/farmacología , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Extractos Vegetales/química , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Psoralea/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Regulación hacia Arriba/efectos de los fármacos
13.
Environ Toxicol ; 33(1): 41-51, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28941016

RESUMEN

Vitis thunbergii var. taiwaniana (VTT) is a wild grape native to Taiwan, belonging to the Vitaceae family and Vitis genus, and widely used as folk herbal medicine. It is traditionally used for the treatment of diarrhea, hypertension, neuroprotection, jaundice, and arthritis. We used the wild-collected VTT and sterilized them to establish the plant tissue culture, and then took the leaves for DNA sequencing to determine its original base. We use methanol to extract VTT in four different solvents: 1-butanol, n-hexane, ethyl acetate, and water. These four preliminary extracts were used to treat human prostate cancer DU145 cells in vitro. We use the flow cytometry to check the cell survival situation. Finally, we found the ethyl acetate layer roughing product (referred VTEA) in human prostate cancer apoptotic effects of cell line DU-145. In the present studies, we use the crude extract of VTT to examine whether or not it can induce apoptosis of DU145 cells in vitro. Viability assays for extracts of VTT treatment showed that it had dose-dependent effect on human prostate cancer DU145 cells. We also found that the extract of VTT induces time-dependent mitochondrial and intrinsic-dependent apoptosis pathways. The in vitro cytotoxic effects were investigated by cell cycle analysis and the determination of apoptotic DNA fragmentation in DU145 cells. The cell cycle analysis showed that extracts of VTT induced a significant increase in the number of cells in G0 /G1 phase. The extract of VTT induced chromatin changes and apoptosis of DU145 cells also were confirmed by DAPI and PI staining that were measured by fluorescence microscopy and flow cytometry, respectively. Finally, the expression of relevant proteins was analyzed by Western blot analysis. These results promoted us to further evaluate apoptosis associated proteins and elucidate the possible signal pathway in DU-145 cells after treated with the extract of VTT.


Asunto(s)
Apoptosis/efectos de los fármacos , Ciclina D/metabolismo , Ciclina E/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Vitis/química , Acetatos/química , Caspasas/metabolismo , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Ciclina D/antagonistas & inhibidores , Ciclina E/antagonistas & inhibidores , Fragmentación del ADN/efectos de los fármacos , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Metanol/química , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Extractos Vegetales/análisis , Extractos Vegetales/química , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Taiwán , Vitis/metabolismo
14.
Environ Toxicol ; 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29717538

RESUMEN

Gefitinib has been used for cancer patients and curcumin (CUR), demethoxycurcumin (DMC), or bisdemethoxycurcumin (BDMC) also shown to induce cancer cell apoptosis. However, no report shows the combination of gefitinib with, CUR, DMC, or BDMC induce cell apoptosis and autophagy in human oral cancer cells. In this study, we investigated the effects of gefitinib with or without CUR, DMC, or BDMC co-treatment on the cell viability, apoptotic cell death, autophagy, mitochondria membrane potential (MMP), and caspase-3 activities by flow cytometry assay and autophagy by acridine orange (AO) staining in human oral cancer SAS cells. Results indicated that gefitinib co-treated with CUR, DMC, or BDMC decreased total viable cell number through the induction of cell apoptosis and autophagy and decreased the levels of MMP and increased caspase-3 activities in SAS cells. Western blotting indicated that gefitinib combined with CUR, DMC, or BDMC led to decrease Bcl-2 protein expression which is an antiapoptotic protein and to increase ATG5, Beclin 1, p62/SQSTM1, and LC3 expression that associated with cell autophagy in SAS cells. Gefitinib combined with CUR and DMC led to significantly reduce the tumor weights and volumes in SAS cell xenograft nude mice but did not affect the total body weights. Based on those observations, we suggest that the combination of gefitinib with CUR, DMC, and BDMC can be a potential anticancer agent for human oral cancer in future.

15.
Environ Toxicol ; 32(2): 550-568, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26990902

RESUMEN

Triptolide, a traditional Chinese medicine, obtained from Tripterygium wilfordii Hook F, has anti-inflammatory, antiproliferative, and proapoptotic properties. We investigated the potential efficacy of triptolide on murine leukemia by measuring the triptolide-induced cytotoxicity in murine leukemia WEHI-3 cells in vitro. Results indicated that triptolide induced cell morphological changes and induced cytotoxic effects through G0/G1 phase arrest, induction of apoptosis. Flow cytometric assays showed that triptolide increased the production of reactive oxygen species, Ca2+ release and mitochondrial membrane potential (ΔΨm ), and activations of caspase-8, -9, and -3. Triptolide increased protein levels of Fas, Fas-L, Bax, cytochrome c, caspase-9, Endo G, Apaf-1, PARP, caspase-3 but reduced levels of AIF, ATF6α, ATF6ß, and GRP78 in WEHI-3 cells. Triptolide stimulated autophagy based on an increase in acidic vacuoles, monodansylcadaverine staining for LC-3 expression and increased protein levels of ATG 5, ATG 7, and ATG 12. The in vitro data suggest that the cytotoxic effects of triptolide may involve cross-talk between cross-interaction of apoptosis and autophagy. Normal BALB/c mice were i.p. injected with WEHI-3 cells to generate leukemia and were oral treatment with triptolide at 0, 0.02, and 0.2 mg/kg for 3 weeks then animals were weighted and blood, liver, spleen samples were collected. Results indicated that triptolide did not significantly affect the weights of animal body, spleen and liver of leukemia mice, however, triptolide significant increased the cell populations of T cells (CD3), B cells (CD19), monocytes (CD11b), and macrophage (Mac-3). Furthermore, triptolide increased the phagocytosis of macrophage from peripheral blood mononuclear cells (PBMC) but not effects from peritoneum. Triptolide promoted T and B cell proliferation at 0.02 and 0.2 mg/kg treatment when cells were pretreated with Con A and LPS stimulation, respectively; however, triptolide did not significant affect NK cell activities in vivo. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 550-568, 2017.


Asunto(s)
Antineoplásicos Alquilantes/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Diterpenos/toxicidad , Fenantrenos/toxicidad , Animales , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocromos c/metabolismo , Daño del ADN/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Compuestos Epoxi/toxicidad , Leucemia/metabolismo , Leucemia/patología , Activación de Linfocitos/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Medicina Tradicional China , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Especies Reactivas de Oxígeno/metabolismo , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Trasplante Homólogo
16.
Environ Toxicol ; 32(6): 1725-1741, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28181380

RESUMEN

Oral cancer is one of the cancer-related diseases in human populations and its incidence rates are rising worldwide. Fisetin, a flavonoid from natural products, has been shown to exhibit anticancer activities in many human cancer cell lines but the molecular mechanism of fisetin-induced apoptosis in human oral cancer cells is still unclear; thus, in this study, we investigated fisetin-induced cell death and associated signal pathways on human oral cancer SCC-4 cells in vitro. We examined cell morphological changes, total viable cells, and cell cycle distribution by phase contrast microscopy and flow cytometry assays. Reactive oxygen species (ROS), Ca2+ , mitochondria membrane potential (ΔΨm ), and caspase-8, -9, and -3 activities were also measured by flow cytometer. Results indicate that fisetin induced cell death through the cell morphological changes, caused G2/M phase arrest, induction of apoptosis, promoted ROS and Ca2+ production, and decreased the level of ΔΨm and increased caspase-3, -8, and -9 activities in SCC-4 cells. DAPI staining and DNA gel electrophoresis were also used to confirm fisetin-induced cell apoptosis in SCC-4 cells. Western blotting also found out that Fisetin increased the proapoptotic proteins such as Bax and Bid and decreased the antiapoptotic proteins such as Bcl-2. Furthermore, results also showed that Fisetin increased the cytochrome c, AIF, and Endo G release from mitochondria in SCC-4 cells. We also used ATF-6α, ATF-6ß, GADD153, and GRP78 which indicated that fisetin induced cell death through ER stress. Based on those observations, we suggest that fisetin induced cell apoptosis through ER stress, mitochondria-, and caspase-dependent pathways.


Asunto(s)
Anticarcinógenos/farmacología , Caspasas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Flavonoides/farmacología , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Chaperón BiP del Retículo Endoplásmico , Flavonoles , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias de la Boca/metabolismo , Transducción de Señal
17.
Environ Toxicol ; 31(11): 1600-1611, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26122529

RESUMEN

Prostate cancer is the most frequently diagnosed malignancy in men and the second highest contributor of male cancer mortality. The crude extract of Euphorbia formosana (CEEF) has been used for treatment of different diseases but the cytotoxic effects of CEEF on human cancer cells have not been reported. The purpose of the present experiments was to determine effects of CEEF on cell cycle distribution and induction of apoptosis in DU145 human prostate cancer cells in vitro. Contrast-phase microscope was used for examining cell morphological changes. Flow cytometric assays were used for cell viability, cell cycle, apoptosis, reactive oxygen species, and Ca2+ production and mitochondria membrane potential (ΔΨm ). Western blotting was used for examining protein expression of cell cycle and apoptosis associated proteins. Real-time PCR was used for examining mRNA levels of caspase-3, -8, and -9, AIF, and Endo G. Confocal laser microscope was used to examine the translocation of AIF, Endo G, and cytochrome in DU145 cells after CEEF exposure. CEEF-induced cell morphological changes, decreased the percentage of viable cells, and induced S phase arrest and apoptosis in DU145 cells. Furthermore, CEEF promoted RAS and Ca2+ production and reduced ΔΨm levels. Real-time QPCR confirmed that CEEF promoted the mRNA expression of caspase-3 and -9, AIF and Endo G and we found that AIF and Endo G and cytochrome c were released from mitochondria. Taken together, CEEF-induced cytotoxic effects via ROS production, induced S phase arrest and induction of apoptosis through caspase-dependent and independent and mitochondria-dependent pathways in DU245 cancer cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1600-1611, 2016.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasas/fisiología , Euphorbia , Extractos Vegetales/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Masculino , Mitocondrias/fisiología , Neoplasias de la Próstata/patología
18.
Molecules ; 21(7)2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27376261

RESUMEN

In this study we investigate the molecular mechanisms of caspases and mitochondria in the extrinsic and intrinsic signal apoptosis pathways in human leukemia HL-60 cells after in vitro exposure to 18α-glycyrrhetinic acid (18α-GA). Cells were exposed to 18α-GA at various concentrations for various time periods and were harvested for flow cytometry total viable cell and apoptotic cell death measurements. Cells treated with 18α-GA significantly inhibited cell proliferation and induced cell apoptosis in a dose-dependent manner, with an IC50 value of 100 µM at 48 h. The cell growth inhibition resulted in induction of apoptosis and decreased the mitochondria membrane potential (ΔΨm) and increased caspase-8, -9 and -3 activities. Furthermore, cytochrome c and AIF were released from mitochondria, as shown by western blotting and confirmed by confocal laser microscopy. Western blotting showed that 18α-GA increased the levels of pro-apoptotic proteins such as Bax and Bid and decreased the anti-apoptotic proteins such as Bcl-2 and Bcl-xl, furthermore, results also showed that 18α-GA increased Fas and Fas-L which are associated with surface death receptor in HL-60 cells. Based on those observations, the present study supports the hypothesis that 18α-GA-induced apoptosis in HL-60 cells involves the activation of the both extrinsic and intrinsic apoptotic pathways.


Asunto(s)
Antineoplásicos/farmacología , Caspasas/metabolismo , Ácido Glicirretínico/análogos & derivados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Expresión Génica , Ácido Glicirretínico/farmacología , Células HL-60 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Transporte de Proteínas
19.
Molecules ; 21(10)2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27754332

RESUMEN

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy of the head and neck and the incidence is higher in Southeast Asia. Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid, a natural product, and exhibits biological activities including action against many human cancer cell lines. However, the molecular mechanism of TET-induced cell apoptosis in human NPC cells is still unclear. In the present study, we investigated TET-induced apoptotic cell death and associated possible signal pathways on human nasopharyngeal carcinoma NPC-TW 076 cells in vitro. Phase contrast microscopy was used to examine cell morphology and DAPI staining was used to examine chromatin condensation. Flow cytometry assay was used to measure total viable cells, cell cycle and sub-G1 phase distribution, reactive oxygen species (ROS), Ca2+, and mitochondria membrane potential (ΔΨm) in NPC-TW 076 cells. Results indicate that TET induced cell death through the cell morphological changes, caused G0/G1 phase arrest, increased ROS and Ca2+ production, and finally caused apoptotic cell death in NPC-TW 076 cells. There was no influence on the level of ΔΨm after TET treatment. Western blotting indicated that TET increased endoplasmic reticulum (ER) stress associated protein expression such as GADD153, GRP78, ATF-6α and ATF-6 ßwhich indicated that TET induced cell death through ER stress. ER stress is a potential target in cancer treatment, so the ability of TET to induce ER stress response and to activate programming cell death in NPC-TW 076 cells make this molecule become a promising anticancer agent.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Bencilisoquinolinas/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Nasofaríngeas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Carcinoma , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
20.
Environ Toxicol ; 30(1): 74-82, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23949904

RESUMEN

Metastasis plays an important role in mortality of cancer patients. Migration and invasion are the major characteristics of tumor metastasis. The induction of matrix metalloproteinases (MMPs) such as MMP-2 and -9 are particularly important for the invasiveness of various cancer cells. Bufalin, a class of toxic steroids, was purified from the skin glands of Bufo gargarizans or Bufo melanostictus; it is known to inhibit proliferation of human cancer cells. In this study, we investigated the antiinvasive mechanisms of bufalin in the human hepatocellular cancer cell line SK-Hep1. Bufalin significantly reduced serum-induced cell invasion and migration. Furthermore, bufalin markedly inhibited MMP-2 and -9 activity, mRNA expression and protein levels in SK-Hep1 cells. Bufalin attenuated phosphoinisitide-3-kinase (PI3K) and phosphorylation of AKT which was associated with reduced levels of nuclear factor kappa B (NF-κB). Bufalin also suppressed protein levels of FAK and Rho A, VEGF, MEKK3, MKK7, and uPA and it diminished NF-κB translocation. Based on these observations, we propose that bufalin is acts as an antiinvasive agent by inhibiting MMP-2 and -9 and involving PI3K/AKT and NF-κB pathways. Bufalin is a potential therapeutic agent that may have efficacy in preventing the invasion and metastasis of malignant liver tumors.


Asunto(s)
Antineoplásicos/farmacología , Bufanólidos/farmacología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Invasividad Neoplásica , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda