Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Development ; 144(14): 2618-2628, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619823

RESUMEN

Mechanisms that regulate tissue-specific progenitors for maintenance and differentiation during development are poorly understood. Here, we demonstrate that the co-repressor protein Sin3a is crucial for lung endoderm development. Loss of Sin3a in mouse early foregut endoderm led to a specific and profound defect in lung development with lung buds failing to undergo branching morphogenesis and progressive atrophy of the proximal lung endoderm with complete epithelial loss at later stages of development. Consequently, neonatal pups died at birth due to respiratory insufficiency. Further analysis revealed that loss of Sin3a resulted in embryonic lung epithelial progenitor cells adopting a senescence-like state with permanent cell cycle arrest in G1 phase. This was mediated at least partially through upregulation of the cell cycle inhibitors Cdkn1a and Cdkn2c. At the same time, loss of endodermal Sin3a also disrupted cell differentiation of the mesoderm, suggesting aberrant epithelial-mesenchymal signaling. Together, these findings reveal that Sin3a is an essential regulator for early lung endoderm specification and differentiation.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Proteínas Represoras/metabolismo , Animales , Animales Recién Nacidos , Puntos de Control del Ciclo Celular , Diferenciación Celular , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Pulmón/citología , Ratones , Ratones Noqueados , Organogénesis/genética , Organogénesis/fisiología , Embarazo , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Complejo Correpresor Histona Desacetilasa y Sin3
2.
Am J Respir Cell Mol Biol ; 60(1): 41-48, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30130411

RESUMEN

Severe pulmonary fibrosis such as idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of extracellular matrix and fibroblast activation. Targeting fibroblast activation has contributed to the development of antifibrotic therapeutics for patients with IPF. Mitogen-activated protein kinase-activated protein kinase 2 (MK2), downstream in the transforming growth factor-ß/p38 mitogen-activated protein kinase pathway, has been implicated in inflammatory and fibrosing diseases. Increased concentrations of activated MK2 were expressed in IPF lung and in the mouse bleomycin model of lung fibrosis. The aim of the present study was to determine the role and the mechanisms of MK2 in fibroblast invasion and lung fibrosis. Our results showed that an MK2 inhibitor (MMI-0100) was able to inhibit the invasive capacity of lung fibroblasts isolated from patients with IPF, as well as fibroblasts isolated from both wild-type mice and mice with overexpressing hyaluronan synthase 2 (HAS2) in the myofibroblast compartment. We previously showed that hyaluronan and HAS2 regulate fibroblast invasion and lung fibrosis in vivo. The results of the present study showed that MMI-0100 reduced transforming growth factor-ß-induced hyaluronan production in human and mouse fibroblasts in vitro and that HAS2 mediated MK2 activation, suggesting a feed-forward loop in fibroblast activation. More importantly, MK2 inhibition attenuated hyaluronan accumulation and reduced collagen content in bleomycin-injured mouse lungs in vivo. Conditional deletion of MK2 in fibroblasts attenuated bleomycin-induced lung fibrosis. These data provide evidence that MK2 has a role in fibroblast invasion and fibrosis and may be a novel therapeutic target in pulmonary fibrosis.


Asunto(s)
Fibroblastos/patología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Fibrosis Pulmonar/prevención & control , Índice de Severidad de la Enfermedad , Animales , Antibióticos Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Bleomicina/toxicidad , Células Cultivadas , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología
3.
Am J Respir Cell Mol Biol ; 57(6): 721-732, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28799781

RESUMEN

Successful repair and renewal of alveolar epithelial cells (AECs) are critical in prohibiting the accumulation of myofibroblasts in pulmonary fibrogenesis. MicroRNAs (miRNAs) are multifocal regulators involved in lung injury and repair. However, the contribution of miRNAs to AEC2 renewal and apoptosis is incompletely understood. We report that miRNA-29c (miR-29c) expression is lower in AEC2s of individuals with idiopathic pulmonary fibrosis than in healthy lungs. Epithelial cells overexpressing miR-29c show higher proliferative rates and viability. miR-29c protects epithelial cells from apoptosis by targeting forkhead box O3a (Foxo3a). Both overexpression of miR-29c conventionally and AEC2s specifically lead to less fibrosis and better recovery in vivo. Furthermore, deficiency of miR-29c in AEC2s results in higher apoptosis and reduced epithelial renewal. Interestingly, a gene network including a subset of apoptotic genes was coregulated by both Toll-like receptor 4 and miR-29c. Taken together, miR-29c maintains epithelial integrity and promotes recovery from lung injury, thereby attenuating lung fibrosis in mice.


Asunto(s)
Apoptosis , Células Epiteliales/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , MicroARNs/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Células Epiteliales/patología , Femenino , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones , MicroARNs/genética , Mucosa Respiratoria/patología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
4.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945505

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant repair that diminishes lung function via mechanisms that remain poorly understood. CC chemokine receptor (CCR10) and its ligand CCL28 were both elevated in IPF compared with normal donors. CCR10 was highly expressed by various cells from IPF lungs, most notably stage-specific embryonic antigen-4-positive mesenchymal progenitor cells (MPCs). In vitro, CCL28 promoted the proliferation of CCR10+ MPCs while CRISPR/Cas9-mediated targeting of CCR10 resulted in the death of MPCs. Following the intravenous injection of various cells from IPF lungs into immunodeficient (NOD/SCID-γ, NSG) mice, human CCR10+ cells initiated and maintained fibrosis in NSG mice. Eph receptor A3 (EphA3) was among the highest expressed receptor tyrosine kinases detected on IPF CCR10+ cells. Ifabotuzumab-targeted killing of EphA3+ cells significantly reduced the numbers of CCR10+ cells and ameliorated pulmonary fibrosis in humanized NSG mice. Thus, human CCR10+ cells promote pulmonary fibrosis, and EphA3 mAb-directed elimination of these cells inhibits lung fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Células Madre Mesenquimatosas/metabolismo , Receptor EphA3/metabolismo , Receptores CCR10/metabolismo , Células Epiteliales Alveolares/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Sistemas CRISPR-Cas , Quimiocinas CC/metabolismo , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Fibrosis Pulmonar Idiopática/patología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones SCID
5.
JCI Insight ; 4(6)2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30763282

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with unremitting extracellular matrix deposition, leading to a distortion of pulmonary architecture and impaired gas exchange. Fibroblasts from IPF patients acquire an invasive phenotype that is essential for progressive fibrosis. Here, we performed RNA sequencing analysis on invasive and noninvasive fibroblasts and found that the immune checkpoint ligand CD274 (also known as PD-L1) was upregulated on invasive lung fibroblasts and was required for the invasive phenotype of lung fibroblasts, is regulated by p53 and FAK, and drives lung fibrosis in a humanized IPF model in mice. Activating CD274 in IPF fibroblasts promoted invasion in vitro and pulmonary fibrosis in vivo. CD274 knockout in IPF fibroblasts and targeting CD274 by FAK inhibition or CD274-neutralizing antibodies blunted invasion and attenuated fibrosis, suggesting that CD274 may be a novel therapeutic target in IPF.


Asunto(s)
Antígeno B7-H1/metabolismo , Fibroblastos/metabolismo , Fibrosis/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Animales , Antígeno B7-H1/genética , Adhesión Celular , Femenino , Fibroblastos/patología , Fibrosis/patología , Humanos , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/terapia , Pulmón/patología , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Fenotipo , Transcriptoma
6.
Oncotarget ; 8(39): 64867-64877, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-29029397

RESUMEN

An aberrant systemic artery supply results in recurrent infections in the abnormal lung lobe of intralobar pulmonary sequestration (ILS). The mechanisms underlying such persistent inflammation are unknown. Here, we hypothesize that alteration of an endothelial cell niche for alveolar epithelial cells results in the impaired proliferation potential of alveolar progenitor cells, leading to the defective defense mechanism in intralobar pulmonary sequestration. Paraffin sections of lung tissues from patients with intralobar pulmonary sequestration or from healthy controls were collected for analysis of alveolar epithelial alterations in intralobar pulmonary sequestration by quantitative RT-PCR or immunofluorescent staining. Differential transcripts were identified between human pulmonary artery endothelial cells and human aortic endothelial cells by microarray. Validation of microarray data by quantitative PCR analysis indicated that thrombospondin-1 expression level is low in near-lesion part but high in lesion part of ILS lobe as compared to healthy controls. In vitro 3-D matrigel culture was adopted to evaluate the regulation of alveolar progenitor cells by thrombospondin-1 and CD36. We found that the proliferative potential of alveolar type 2 stem/progenitor cells was impaired in intralobar pulmonary sequestration. Mechanistically, we discovered that endothelial thrombospondin-1 promotes alveolar type 2 cell proliferation through the interaction with CD36. These data demonstrate that alveolar stem cells are impaired in the abnormal lobe from patients with intralobar pulmonary sequestration and imply that restoring epithelial integrity can be beneficial for the future treatments of recurrent infections in lung pathologies.

7.
Matrix Biol ; 55: 35-48, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26987798

RESUMEN

Dysregulated repair of lung injury often results in lung fibrosis characterized by unremitting deposition of matrix components including glycosaminoglycan hyaluronan (HA). HA is mainly produced by hyaluronan synthases (HAS) in mesenchymal cells. We previously demonstrated that over-expression of HAS2 in mesenchymal cells in mice regulates the invasiveness of fibroblasts and promotes severe lung fibrosis. The mechanisms that control the resolution of lung fibrosis are unknown. We propose that a critical step in resolving fibrosis is the induction of senescence in fibrotic fibroblasts and hyaluronan synthase 2 may regulate this process. We found that fibrotic fibroblasts developed the characteristics of replicative senescence in culture and that HAS2 expression was dramatically down-regulated. Furthermore, down-regulation of HAS2 initiated and regulated fibroblast senescence through a p27-CDK2-SKP2 pathway. Deletion of HAS2 in mouse mesenchymal cells increased the cellular senescence of fibroblasts in bleomycin-induced mouse lung fibrosis in vivo. These data suggest that HAS2 may be a critical regulator of the fate of pulmonary fibrosis and we propose a model where over-expression of HAS2 promotes an invasive phenotype resulting in severe fibrosis and down-regulation of HAS2 promotes resolution. Targeting HAS2 to induce fibroblast senescence could be an attractive approach to resolve tissue fibrosis.


Asunto(s)
Senescencia Celular , Fibroblastos/enzimología , Hialuronano Sintasas/metabolismo , Fibrosis Pulmonar/enzimología , Animales , Células Cultivadas , Humanos , Ratones Transgénicos , Fibrosis Pulmonar/patología
8.
Nat Med ; 22(11): 1285-1293, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27694932

RESUMEN

Successful recovery from lung injury requires the repair and regeneration of alveolar epithelial cells to restore the integrity of gas-exchanging regions within the lung and preserve organ function. Improper regeneration of the alveolar epithelium is often associated with severe pulmonary fibrosis, the latter of which involves the recruitment and activation of fibroblasts, as well as matrix accumulation. Type 2 alveolar epithelial cells (AEC2s) are stem cells in the adult lung that contribute to the lung repair process. The mechanisms that regulate AEC2 renewal are incompletely understood. We provide evidence that expression of the innate immune receptor Toll-like receptor 4 (TLR4) and the extracellular matrix glycosaminoglycan hyaluronan (HA) on AEC2s are important for AEC2 renewal, repair of lung injury and limiting the extent of fibrosis. Either deletion of TLR4 or HA synthase 2 in surfactant-protein-C-positive AEC2s leads to impaired renewal capacity, severe fibrosis and mortality. Furthermore, AEC2s from patients with severe pulmonary fibrosis have reduced cell surface HA and impaired renewal capacity, suggesting that HA and TLR4 are key contributors to lung stem cell renewal and that severe pulmonary fibrosis is the result of distal epithelial stem cell failure.


Asunto(s)
Células Epiteliales Alveolares/inmunología , Autorrenovación de las Células/inmunología , Ácido Hialurónico/metabolismo , Lesión Pulmonar/inmunología , Fibrosis Pulmonar/inmunología , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Células Madre/inmunología , Receptor Toll-Like 4/inmunología , Células Epiteliales Alveolares/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Línea Celular , Proliferación Celular , Autorrenovación de las Células/genética , Citometría de Flujo , Glucuronosiltransferasa/genética , Humanos , Hialuronano Sintasas , Hidroxiprolina/metabolismo , Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Inmunidad Innata , Interleucina-6/inmunología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Ratones , Ratones Noqueados , Organoides , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Índice de Severidad de la Enfermedad , Células Madre/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
9.
JCI Insight ; 1(20): e90301, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27942594

RESUMEN

Maladaptive epithelial repair from chronic injury is a common feature in fibrotic diseases, which in turn activates a pathogenic fibroblast response that produces excessive matrix deposition. Dysregulated microRNAs (miRs) can regulate expression of multiple genes and fundamentally alter cellular phenotypes during fibrosis. Although several miRs have been shown to be associated with lung fibrosis, the mechanisms by which miRs modulate epithelial behavior in lung fibrosis are lacking. Here, we identified miR-323a-3p to be downregulated in the epithelium of lungs with bronchiolitis obliterans syndrome (BOS) after lung transplantation, idiopathic pulmonary fibrosis (IPF), and murine bleomycin-induced fibrosis. Antagomirs for miR-323a-3p augment, and mimics suppress, murine lung fibrosis after bleomycin injury, indicating that this miR may govern profibrotic signals. We demonstrate that miR-323a-3p attenuates TGF-α and TGF-ß signaling by directly targeting key adaptors in these important fibrogenic pathways. Moreover, miR-323a-3p lowers caspase-3 expression, thereby limiting programmed cell death from inducers of apoptosis and ER stress. Finally, we find that epithelial expression of miR-323a-3p modulates inhibitory crosstalk with fibroblasts. These studies demonstrate that miR-323a-3p has a central role in lung fibrosis that spans across murine and human disease, and downregulated expression by the lung epithelium releases inhibition of various profibrotic pathways to promote fibroproliferation.


Asunto(s)
Fibrosis Pulmonar Idiopática/genética , MicroARNs/genética , Mucosa Respiratoria/fisiopatología , Animales , Bleomicina , Bronquiolitis Obliterante/genética , Bronquiolitis Obliterante/patología , Células Cultivadas , Fibroblastos/citología , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón , Trasplante de Pulmón , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Factores de Crecimiento Transformadores/metabolismo
10.
Sci Rep ; 5: 14910, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26442443

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease. Although the pathogenesis is poorly understood, evidence suggests that genetic and epigenetic alterations, such as DNA methylation, may play a key role. Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-ß (TGF-ß) superfamily and are important regulators in IPF. Here we identified BMP endothelial cell precursor-derived regulator (BMPER) as a key regulator of fibroblast activation. BMPER is a secreted glycoprotein that binds directly to BMPs and may regulate TGF-ß/BMP signaling, but its role in lung fibrosis is not clear. BMPER is highly expressed in human IPF lung fibroblasts compared to normal lung fibroblasts. Demethylation agent 5'-azacytidine decreased BMPER expression in fibroblasts, and attenuated the invasion and migration of IPF lung fibroblasts. Furthermore, siRNA-mediated reduction of BMPER in the human lung fibroblasts impaired cell migration and invasion. 5'-azacytidine treatment additionally regulated BMPER expression and reduced lung fibrosis in mice in vivo. These findings demonstrate that methylation of specific genes in fibroblasts may offer a new therapeutic strategy for IPF by modulating fibroblast activation.


Asunto(s)
Proteínas Portadoras/metabolismo , Metilación de ADN , Fibroblastos/metabolismo , Pulmón/metabolismo , Fibrosis Pulmonar/metabolismo , Animales , Western Blotting , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Movimiento Celular , Células Cultivadas , Femenino , Fibroblastos/citología , Humanos , Técnicas para Inmunoenzimas , Técnicas In Vitro , Pulmón/citología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fibrosis Pulmonar/patología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
11.
Cell Host Microbe ; 14(3): 294-305, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24034615

RESUMEN

Cholera toxin (CT), a virulence factor elaborated by Vibrio cholerae, is sufficient to induce the severe diarrhea characteristic of cholera. The enzymatic moiety of CT (CtxA) increases cAMP synthesis in intestinal epithelial cells, leading to chloride ion (Cl(-)) efflux through the CFTR Cl(-) channel. To preserve electroneutrality and osmotic balance, sodium ions and water also flow into the intestinal lumen via a paracellular route. We find that CtxA-driven cAMP increase also inhibits Rab11/exocyst-mediated trafficking of host proteins including E-cadherin and Notch signaling components to cell-cell junctions in Drosophila, human intestinal epithelial cells, and ligated mouse ileal loops, thereby disrupting barrier function. Additionally, CtxA induces junctional damage, weight loss, and dye leakage in the Drosophila gut, contributing to lethality from live V. cholerae infection, all of which can be rescued by Rab11 overexpression. These barrier-disrupting effects of CtxA may act in parallel with Cl(-) secretion to drive the pathophysiology of cholera.


Asunto(s)
Toxina del Cólera/metabolismo , Células Epiteliales/fisiología , Exosomas/efectos de los fármacos , Interacciones Huésped-Patógeno , Proteínas de Uniones Estrechas/antagonistas & inhibidores , Uniones Estrechas/fisiología , Vibrio cholerae/fisiología , Animales , Línea Celular , Cloro/metabolismo , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Drosophila , Células Epiteliales/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Humanos , Ratones , Modelos Biológicos , Sodio/metabolismo , Análisis de Supervivencia , Uniones Estrechas/efectos de los fármacos , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda