Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34681612

RESUMEN

Recent advances in the synthesis of metal nanoparticles (MeNPs), and more specifically gold nanoparticles (AuNPs), have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. The properties of functionalised MeNPs can be fine-tuned depending on their final application, and subsequently, these properties can strongly modulate their biological effects. In this review, we will firstly focus on the impact of MeNP characteristics (particularly of gold nanoparticles, AuNPs) such as shape, size, and aggregation on their biological activities. Moreover, we will detail different in vitro and in vivo assays to be performed when cytotoxicity and biocompatibility must be assessed. Due to the complex nature of nanomaterials, conflicting studies have led to different views on their safety, and it is clear that the definition of a standard biosafety label for AuNPs is difficult. In fact, AuNPs' biocompatibility is strongly affected by the nanoparticles' intrinsic characteristics, biological target, and methodology employed to evaluate their toxicity. In the last part of this review, the current legislation and requirements established by regulatory authorities, defining the main guidelines and standards to characterise new nanomaterials, will also be discussed, as this aspect has not been reviewed recently. It is clear that the lack of well-established safety regulations based on reliable, robust, and universal methodologies has hampered the development of MeNP applications in the healthcare field. Henceforth, the international community must make an effort to adopt specific and standard protocols for characterisation of these products.


Asunto(s)
Materiales Biocompatibles/química , Oro/química , Nanopartículas del Metal/química , Animales , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/normas , Humanos , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos
2.
Molecules ; 25(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32245000

RESUMEN

In plant protection, biological preparations are used alternately with chemical pesticides. The applied microorganism can influence the concentration of chemical substances. Laboratory and field studies were conducted to assess the influence of Bacillus subtilis and Trichoderma harzianum on the penthiopyrad concentration. In laboratory studies, the effectiveness of penthiopyrad degradation by B. subtilis was approximately 5% during 14 days of the experiment. For penthiopyrad treated with T. harzianum strains, the degradation effectiveness ranged from 34.2% on Day 3 to 56.9% on Day 14. In experiments testing the effects of mixed culture of microorganisms, the effectiveness of penthiopyrad degradation ranged from 23.7% on Day 3 to 29.1% on Day 14. After treatment of apple trees of Gala and Golden Delicious varieties with a biological preparation, a maximum degradation of penthiopyrad of 20% was found in both varieties. Samples of apples were prepared by the quick, easy, cheap, effective, rugged and safe (QuEChERS) method, and penthiopyrad was analyzed by gas chromatography with a mass detector. A determined value of the chronic exposure to penthiopirad was 1.02% of the acceptable daily intake, both for children and for adults. The acute exposure amounted to 7.2% and 1.9% of the acute reference dose for children and adults, respectively. These values were considered to be acceptable and not threatening to health.


Asunto(s)
Bacillus subtilis/metabolismo , Biodegradación Ambiental , Hypocreales/metabolismo , Pirazoles/metabolismo , Tiofenos/metabolismo , Bacillus subtilis/efectos de los fármacos , Exposición a Riesgos Ambientales , Contaminación de Alimentos , Fungicidas Industriales/metabolismo , Humanos , Hypocreales/efectos de los fármacos , Cinética , Pirazoles/farmacología , Tiofenos/farmacología
3.
Molecules ; 25(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936538

RESUMEN

Microalgae are freshwater and marine unicellular photosynthetic organisms that utilize sunlight to produce biomass. Due to fast microalgal growth rate and their unique biochemical profiles and potential applications in food and renewable energy industries, the interest in microalgal research is rapidly increasing. Biochemical and genetic engineering have been considered to improve microalgal biomass production but these manipulations also limited microalgal growth. The aim of the study was the biochemical characterization of recently identified microalgal strain Planktochlorella nurekis with elevated cell size and DNA levels compared to wild type strain that was achieved by a safe non-vector approach, namely co-treatment with colchicine and cytochalasin B (CC). A slight increase in growth rate was observed in twelve clones of CC-treated cells. For biochemical profiling, several parameters were considered, namely the content of proteins, amino acids, lipids, fatty acids, ß-glucans, chlorophylls, carotenoids, B vitamins and ash. CC-treated cells were characterized by elevated levels of lipids compared to unmodified cells. Moreover, the ratio of carotenoids to chlorophyll a and total antioxidant capacity were slightly increased in CC-treated cells. We suggest that Planktochlorella nurekis with modified DNA levels and improved lipid content can be considered to be used as a dietary supplement and biofuel feedstock.


Asunto(s)
Biomasa , ADN/química , Lípidos/genética , Microalgas/genética , Biocombustibles , Clorofila A/biosíntesis , Clorofila A/química , ADN/genética , Lípidos/biosíntesis , Lípidos/química , Microalgas/química , Microalgas/metabolismo , Fotosíntesis/genética
4.
Microb Cell Fact ; 18(1): 210, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796078

RESUMEN

BACKGROUND: Synthesis of nanoparticles (NPs) and their incorporation in materials are amongst the most studied topics in chemistry, physics and material science. Gold NPs have applications in medicine due to their antibacterial and anticancer activities, in biomedical imaging and diagnostic test. Despite chemical synthesis of NPs are well characterized and controlled, they rely on the utilization of harsh chemical conditions and organic solvent and generate toxic residues. Therefore, greener and more sustainable alternative methods for NPs synthesis have been developed recently. These methods use microorganisms, mainly yeast or yeast cell extract. NPs synthesis with culture supernatants are most of the time the preferred method since it facilitates the purification scheme for the recovery of the NPs. Extraction of NPs, formed within the cells or cell-wall, is laborious, time-consuming and are not cost effective. The bioactivities of NPs, namely antimicrobial and anticancer, are known to be related to NPs shape, size and size distribution. RESULTS: Herein, we reported on the green synthesis of gold nanoparticles (AuNPs) mediated by pyomelanin purified from the yeast Yarrowia lipolytica. A three levels four factorial Box-Behnken Design (BBD) was used to evaluate the influence of temperature, pH, gold salt and pyomelanin concentration on the nanoparticle size distribution. Based on the BBD, a quadratic model was established and was applied to predict the experimental parameters that yield to AuNPs with specific size. The synthesized nanoparticles with median size value of 104 nm were of nanocrystalline structure, mostly polygonal or spherical. They exhibited a high colloidal stability with zeta potential of - 28.96 mV and a moderate polydispersity index of 0.267. The absence of cytotoxicity of the AuNPs was investigated on two mammalian cell lines, namely mouse fibroblasts (NIH3T3) and human osteosarcoma cells (U2OS). Cell viability was only reduced at AuNPs concentration higher than 160 µg/mL. Moreover, they did not affect on the cell morphology. CONCLUSION: Our results indicate that different process parameters affect significantly nanoparticles size however with the mathematical model it is possible to define the size of AuNPs. Moreover, this melanin-based gold nanoparticles showed neither cytotoxicity effect nor altered cell morphology.


Asunto(s)
Oro/metabolismo , Melaninas/metabolismo , Nanopartículas del Metal/química , Yarrowia/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Coloides/química , Coloides/farmacología , Oro/química , Oro/farmacología , Humanos , Melaninas/biosíntesis , Melaninas/aislamiento & purificación , Ratones , Células 3T3 NIH , Propiedades de Superficie , Yarrowia/citología , Yarrowia/crecimiento & desarrollo
5.
Bioprocess Biosyst Eng ; 39(8): 1213-23, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27083587

RESUMEN

Green synthesis method using camomile extract was applied to synthesize silver nanoparticles to tune their antibacterial properties merging the synergistic effect of camomile and Ag. Scanning transmission electron microscopy revealed that camomile extract (CE) consisted of porous globular nanometer sized structures, which were a perfect support for Ag nanoparticles. The Ag nanoparticles synthesized with the camomile extract (AgNPs/CE) of 7 nm average sizes, were uniformly distributed on the CE support, contrary to the pure Ag nanoparticles synthesized with glucose (AgNPs/G), which were over 50 nm in diameter and strongly agglomerated. The energy dispersive X-ray spectroscopy chemical analysis showed that camomile terpenoids act as a capping and reducing agent being adsorbed on the surface of AgNPs/CE enabling their reduction from Ag(+) and preventing them from agglomeration. Fourier transform infrared and ultraviolet-visible spectroscopy measurements confirmed these findings, as the spectra of AgNPs/CE, compared to pure CE, did not contain the 1109 cm(-1) band, corresponding to -C-O groups of terpenoids and the peaks at 280 and 320 nm, respectively. Antibacterial tests using four bacteria strains showed that the AgNPs/CE performed five times better compared to CE AgNPs/G samples, reducing totally all the bacteria in 2 h.


Asunto(s)
Antibacterianos/farmacología , Manzanilla/química , Coloides , Nanopartículas del Metal/química , Plata/química , Terpenos/química , Antibacterianos/síntesis química , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Tamaño de la Partícula , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Agua
6.
Acta Biol Hung ; 67(4): 373-378, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28000509

RESUMEN

The proteins interaction with DNA is one of the key regulatory elements of many biological processes; including gene transcription, epigenetic modification or cell differentiation. Immunoprecipitation of chromatin; ChIP; is a method used to assess the interaction of the protein with a DNA sequence, and determines the localization of specific locus in the genome. The main steps of this method are fixation, sonication, immunoprecipitation and analysis of DNA. Although the immunoprecipitation assay is a multipurpose tool applied in biochemistry and biotechnology, it requires optimization. This paper describes several critical parameters that should be taken into account when immunoprecipitation assay is applied.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Metilación de ADN , ADN/metabolismo , Hepatocitos/metabolismo , Código de Histonas , Factores de Transcripción/metabolismo , Animales , Epigénesis Genética , Masculino , Ratones , Unión Proteica , Factores de Tiempo
7.
Sci Rep ; 14(1): 17862, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090254

RESUMEN

Orthodontic adhesive doped with sulfur-modified TiO2 promotes antibacterial effect. The objective of the study was to characterize the physical, mechanical and antibacterial properties of the orthodontic bracket adhesive, doped with modified titanium dioxide nanoparticles. Sulfur-doped TiO2 was synthetized and morphological topography was analyzed with TEM and SEM imaging. The catalytic performance during the degradation of rhodamine B was assessed. Nanomaterial was added at four concentration (1, 3, 6, and 10 wt%) to a commercial orthodontic adhesive. The shear bond strength and microhardness of a resin-based orthodontic adhesive containing S-TiO2 were evaluated. The inhibitory effect of the pure and doped adhesives against Escherichia coli and Streptococcus mutans was examined. As the results, the highest antimicrobial activity and good adhesive properties were noticed for light-cured orthodontic adhesive doped with 3% of S-TiO2. In this case, orthodontic adhesives with strong and long-lasting bactericidal properties can be created through the incorporation of modified TiO2 without negatively influencing microhardnesses, and bonding ability. White spot lesion and demineralization, which occurs very often in patients during orthodontic treatment, can be therefore minimized.


Asunto(s)
Antibacterianos , Cementos Dentales , Escherichia coli , Streptococcus mutans , Titanio , Titanio/química , Titanio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Streptococcus mutans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Cementos Dentales/química , Cementos Dentales/farmacología , Ensayo de Materiales , Resistencia al Corte , Soportes Ortodóncicos , Humanos , Azufre/química
8.
Biotechnol J ; 19(2): e2300564, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403441

RESUMEN

The dipeptide γ-glutamylcysteine (γ-GC), the first intermediate of glutathione (GSH) synthesis, is considered as a promising drug to reduce or prevent plethora of age-related disorders such as Alzheimer and Parkinson diseases. The unusual γ-linkage between the two constitutive amino acids, namely cysteine and glutamate, renders its chemical synthesis particularly challenging. Herein, we report on the metabolic engineering of the non-conventional yeast Yarrowia lipolytica for efficient γ-GC synthesis. The yeast was first converted into a γ-GC producer by disruption of gene GSH2 encoding GSH synthase and by constitutive expression of GSH1 encoding glutamylcysteine ligase. Subsequently genes involved in cysteine and glutamate anabolism, namely MET4, CYSE, CYSF, and GDH1 were overexpressed with the aim to increase their intracellular availability. With such a strategy, a γ-GC titer of 464 nmol mg-1 protein (93 mg gDCW-1 ) was obtained within 24 h of cell growth.


Asunto(s)
Antioxidantes , Yarrowia , Antioxidantes/metabolismo , Cisteína/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Glutatión , Glutamatos/metabolismo
9.
Sci Rep ; 14(1): 20926, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251685

RESUMEN

Laser texturing seems to be a promising technique for reducing bacterial adhesion on titanium implant surfaces. This work aims to demonstrate the possibility of obtaining a functionally orientated surface of titanium implant elements with a specific architecture with specific bacteriological and photocatalytic properties. Femtosecond laser-generated surface structures, such as laser-induced periodic surface structures (LIPSS, wrinkles), grooves, and spikes on titanium, have been characterised by XRD, Raman spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the titanium surfaces produced was tested based on the degradation effect of methylene blue (MB). The correlation between the photocatalytic activity of TiO2 coatings and their morphology and structure has been analysed. Features related to the size, shape, and distribution of the roughness patterns were found to influence the adhesion of the bacterial strain on different surfaces. On the laser-structurised surface, the adhesion of Escherichia coli bacteria were reduced by 80% compared to an untreated reference surface.


Asunto(s)
Antibacterianos , Adhesión Bacteriana , Escherichia coli , Rayos Láser , Propiedades de Superficie , Titanio , Titanio/química , Titanio/farmacología , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Adhesión Bacteriana/efectos de los fármacos , Catálisis , Microscopía Electrónica de Rastreo , Humanos , Azul de Metileno/química , Azul de Metileno/farmacología , Periimplantitis/microbiología
10.
BMC Genomics ; 14: 456, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23834426

RESUMEN

BACKGROUND: Elevated temperatures induce activation of the heat shock transcription factor 1 (HSF1) which in somatic cells leads to heat shock proteins synthesis and cytoprotection. However, in the male germ cells (spermatocytes) caspase-3 dependent apoptosis is induced upon HSF1 activation and spermatogenic cells are actively eliminated. RESULTS: To elucidate a mechanism of such diverse HSF1 activity we carried out genome-wide transcriptional analysis in control and heat-shocked cells, either spermatocytes or hepatocytes. Additionally, to identify direct molecular targets of active HSF1 we used chromatin immunoprecipitation assay (ChIP) combined with promoter microarrays (ChIP on chip). Genes that are differently regulated after HSF1 binding during hyperthermia in both types of cells have been identified. Despite HSF1 binding to promoter sequences in both types of cells, strong up-regulation of Hsps and other genes typically activated by the heat shock was observed only in hepatocytes. In spermatocytes HSF1 binding correlates with transcriptional repression on a large scale. HSF1-bound and negatively regulated genes encode mainly for proteins required for cell division, involved in RNA processing and piRNA biogenesis. CONCLUSIONS: Observed suppression of the transcription could lead to genomic instability caused by meiotic recombination disturbances, which in turn might induce apoptosis of spermatogenic cells. We propose that HSF1-dependent induction of cell death is caused by the simultaneous repression of many genes required for spermatogenesis, which guarantees the elimination of cells damaged during heat shock. Such activity of HSF1 prevents transmission of damaged genetic material to the next generation.


Asunto(s)
Apoptosis/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Respuesta al Choque Térmico/genética , Hepatocitos/citología , Espermatocitos/citología , Factores de Transcripción/metabolismo , Animales , Inmunoprecipitación de Cromatina , ADN/metabolismo , Factores de Transcripción del Choque Térmico , Hepatocitos/metabolismo , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Espermatocitos/metabolismo , Espermatogénesis/genética , Transcripción Genética
11.
Environ Sci Pollut Res Int ; 30(16): 47727-47741, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36745346

RESUMEN

Nowadays, chemical pesticides are the most widespread measure used to control crop pests and diseases. However, their negative side effects prompted the researchers to search for alternative options that were safer for the environment and people. Pesticide biodegradation by microorganisms seems to be the most reasonable alternative. The aim of the laboratory studies was to assess the influence of Bacillus subtilis and Trichoderma harzianum, used separately and combined together, on fluopyram and tebuconazole degradation. In field studies, the degradation of fluopyram and tebuconazole after the application of the biological preparation in apples was investigated. The results from the laboratory studies show that the greatest decomposition of fluopyram and tebuconazole was observed in tests with T. harzianum in a range of 74.3-81.5% and 44.5-49.2%, respectively. The effectiveness of fluopyram degradation by B. subtilis was 7.5%, while tebuconazole inhibited bacterial cell growth and no degradation was observed. The mixture of microorganisms affected the degradation of fluopyram in a range of 8.3-24.1% and tebuconazole in a range of 6.1-23.3%. The results from the field studies show that degradation increased from 3.1 to 30.8% for fluopyram and from 0.4 to 14.3% for tebuconazole when compared to control samples. The first-order kinetics models were used to simulate the residue dissipation in apples. For the determination of pesticide residues, the QuEChERS method for apple sample preparation was performed, followed by GC-MS/MS technique. Immediately after the treatments, the maximum residue level (MRL) values for tebuconazole were exceeded, and it was equal to 100.7% MRL for the Red Jonaprince variety and 132.3% MRL for the Gala variety. Thus, preharvest time is recommended to obtain apples in which the concentration of pesticides is below the MRL and which can be recognized as safe for humans.


Asunto(s)
Fungicidas Industriales , Malus , Residuos de Plaguicidas , Plaguicidas , Humanos , Fungicidas Industriales/análisis , Espectrometría de Masas en Tándem , Semivida , Residuos de Plaguicidas/análisis
12.
Sci Rep ; 13(1): 17004, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813934

RESUMEN

Biomaterial engineering approaches involve using a combination of miscellaneous bioactive molecules which may promote cell proliferation and, thus, form a scaffold with the environment that favors the regeneration process. Chitosan, a naturally occurring biodegradable polymer, possess some essential features, i.e., biodegradability, biocompatibility, and in the solid phase good porosity, which may contribute to promote cell adhesion. Moreover, doping of the materials with other biocompounds will create a unique and multifunctional scaffold that will be useful in regenerative medicine. This study is focused on the manufacturing and characterization of composite materials based on chitosan, hydroxyapatite, and riboflavin. The resulting films were fabricated by the casting/solvent evaporation method. Morphological and spectroscopy analyses of the films revealed a porous structure and an interconnection between chitosan and apatite. The composite material showed an inhibitory effect on Staphylococcus aureus and exhibited higher antioxidant activity compared to pure chitosan. In vitro studies on riboflavin showed increased cell proliferation and migration of fibroblasts and osteosarcoma cells, thus demonstrating their potential for bone tissue engineering applications.


Asunto(s)
Materiales Biocompatibles , Quitosano , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Quitosano/farmacología , Quitosano/química , Durapatita/farmacología , Durapatita/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Regeneración Ósea , Porosidad , Riboflavina/farmacología
13.
Materials (Basel) ; 15(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35591689

RESUMEN

Recent advances in the synthesis of metal nanoparticles (NPs) have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. Among the approaches for exploiting nanotechnology in medicine, gold nanomaterials in particular have been found as the most promising due to their unique advantages, such as in sensing, image enhancement, and as delivery agents. Although, the first scientific article on gold nanoparticles was presented in 1857 by Faraday, during the last few years, the progress in manufacturing these nanomaterials has taken an enormous step forward. Due to the nanoscale counterparts of gold, which exhibit distinct properties and functionality compared to bulk material, gold nanoparticles stand out, in particular, in therapy, imaging, detection, diagnostics, and precise drug delivery. This review summarizes the current state-of-the-art knowledge in terms of biomedical applications of gold nanoparticles. The application of AuNPs in the following aspects are discussed: (i) imaging and diagnosing of specific target; (ii) treatment and therapies using AuNPs; and (iii) drug delivery systems with gold nanomaterials as a carrier. Among the different approaches in medical imaging, here we either consider AuNPs as a contrast agent in computed tomography (CT), or as a particle used in optical imaging, instead of fluorophores. Moreover, their nontoxic feature, compared to the gadolinium-based contrast agents used in magnetic resonance imaging, are shown. The tunable size, shape, and functionality of gold nanoparticles make them great carriers for targeted delivery. Therefore, here, we summarize gold-based nanodrugs that are FDA approved. Finally, various approaches to treat the specific diseases using AuNPs are discussed, i.e., photothermal or photodynamic therapy, and immunotherapy.

14.
Postepy Biochem ; 57(4): 418-24, 2011.
Artículo en Polaco | MEDLINE | ID: mdl-22568174

RESUMEN

The protein-DNA interactions play a crucial role in many cellular processes such as DNA replication, recombination, repair, or gene transcription. Here we describe a chromatin immunoprecipitation (ChIP) technique, a tool for identifying DNA regions, which are in vivo associated with protein of interest. The main steps of ChIP are: fixation, chromatin fragmentation, immunoprecipitation with a specific antibody, and analysis of the immunoprecipitated DNA. Different analytical tools combined with ChIP (ChIP-chip, ChIP-seq) enable researchers to map protein binding in a truly genome-wide manner with high resolution.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Factores de Transcripción/metabolismo , Cromatina/metabolismo , ADN/metabolismo , Mapeo Peptídico , Unión Proteica
15.
Sci Rep ; 11(1): 13451, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188097

RESUMEN

Drug-resistance of bacteria is an ongoing problem in hospital treatment. The main mechanism of bacterial virulency in human infections is based on their adhesion ability and biofilm formation. Many approaches have been invented to overcome this problem, i.e. treatment with antibacterial biomolecules, which have some limitations e.g. enzymatic degradation and short shelf stability. Silver nanoparticles (AgNPs) may be alternative to these strategies due to their unique and high antibacterial properties. Herein, we report on yeast Saccharomyces cerevisiae extracellular-based synthesis of AgNPs. Transmission electron microscopy (TEM) revealed the morphology and structure of the metallic nanoparticles, which showed a uniform distribution and good colloid stability, measured by hydrodynamic light scattering (DLS). The energy dispersive X-ray spectroscopy (EDS) of NPs confirms the presence of silver and showed that sulfur-rich compounds act as a capping agent being adsorbed on the surface of AgNPs. Antimicrobial tests showed that AgNPs inhibit the bacteria growth, while have no impact on fungi growth. Moreover, tested NPs was characterized by high inhibitory potential of bacteria biofilm formation but also eradication of established biofilms. The cytotoxic effect of the NPs on four mammalian normal and cancer cell lines was tested through the metabolic activity, cell viability and wound-healing assays. Last, but not least, ability to deep penetration of the silver colloid to the root canal was imaged by scanning electron microscopy (SEM) to show its potential as the material for root-end filling.


Asunto(s)
Antiinfecciosos , Bacterias/crecimiento & desarrollo , Nanopartículas del Metal , Saccharomyces cerevisiae/química , Plata , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Plata/química , Plata/farmacología
16.
Biotechnol Prog ; 36(2): e2912, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31525285

RESUMEN

In this study, we report on the ability of the yeast Yarrowia lipolytica W29 to produce an extracellular melanin-like brown pigment at high yield (0.5 mg/ml) in culture medium supplemented with L-tyrosine. This pigment has been characterized as pyomelanin and its synthesis was found to occur by the so-called HGA-melanin pathway. The purified pyomelanin was found embedded with antioxidant properties as it exhibited a radical scavenging activity toward 1,1-diphenyl-2-picrylhydrazyl (DPPH) with IC50 of 230 µg/ml. It was also characterized as noncytotoxic toward two mammalian cell lines, namely the mouse fibroblast NIH3T3 and human keratinocytes HaCaT. When blended with different commercial sunscreens, the purified pyomelanin increased significantly the sun protection factor (SPF) value, highlighting its potential utilization as UV-filter in cosmetic preparations.


Asunto(s)
Melaninas/biosíntesis , Pigmentación , Protectores Solares/metabolismo , Yarrowia/metabolismo , Animales , Línea Celular , Humanos , Melaninas/química , Ratones , Células 3T3 NIH , Factor de Protección Solar , Protectores Solares/química
17.
RSC Adv ; 10(64): 38861-38872, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35518429

RESUMEN

Silver nanoparticles were synthesized with the laser-assisted wet chemical approach at room temperature. The effect of light exposure on the silver nanoparticles' spatial parameters shaping the localized surface plasmon resonance has been evaluated. The optical, structural and morphological characterizations of the Ag nanostructures were conducted with UV-VIS-NIR spectrophotometry, DLS and TEM techniques. The ability of the light-modified Ag nanostructures for energy conversion under the influence of 445 and 880 nm laser radiation is estimated. We have found that the most efficient heat generation can be achieved using triangular Ag nanostructures under the NIR irradiation (880 nm). The temperature effect on the Ag nanostructures' antibacterial properties has been evaluated against the Staphylococcus aureus population. The prospects of triangular Ag nanostructures' application on modern endodontics for the rapid nano-laser disinfection of the root canal system of the human tooth have been demonstrated.

19.
J Biomed Nanotechnol ; 15(4): 848-855, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30841977

RESUMEN

The recent studies on fluorapatite and hydroxyapatite, in the context of their medical applications, have shown that the former has relatively higher thermal stability and better mechanical properties than the latter. Moreover, the presence of fluoride ions is relevant for protection of teeth from dental caries since they stimulate processes of mineralization and crystallization. In this report, a silver modified fluorapatite (FAP/Ag), considered as a novel biomedical compound, was tested for its bactericidal, fungicidal and cytotoxicity activity. All these features were compared to the impact of pure FAP and were evaluated against the bacteria and fungi strains, which constitute main pathogenic species among orthopedic clinical isolates of implant-associated infections. Generally, considerable increase in the antimicrobial activity was observed when silver modified fluorapatite was compared to the pure material. This was manifested among others by disturbance of cell growth pattern and various deformations in the final cell shape as revealed using atomic force microscopy (AFM). Regarding toxicity nowadays as a major issue in implantation, we additionally examined whether the Ag+ ions have an impact on human keratinocytes and mouse fibroblasts using a cytotoxicity assay. To conclude, owing to a great bactericidal potential without collateral cytotoxicity effect the fluorapatite doped with silver ions may be considered a promising biocomponent useful in medical and healthcare applications.


Asunto(s)
Apatitas/química , Animales , Bacterias , Caries Dental , Hongos , Humanos , Ratones , Plata
20.
RSC Adv ; 7(83): 52398-52413, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29308194

RESUMEN

Severe bacterial and fungal infections have become a major clinical and public health concern. Nowadays, additional efforts are needed to develop effective antimicrobial materials that are not harmful to human cells. This work describes the synthesis and characterization of chitosan-ascorbic acid-silver nanocomposites as films exhibiting high antimicrobial activity and non-cytotoxicity towards human cells. The reductive and stabilizing activity of both the biocompatible polymer chitosan and ascorbic acid were used in the synthesis of silver nanoparticles (AgNPs). Herein, we propose an improved composite synthesis based on medium average molecular weight chitosan with a high deacetylation degree, that together with ascorbic acid gave films with a uniform distribution of small AgNPs (<10 nm) exhibiting high antimicrobial activity against biofilm forming bacterial and fungal strains of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. At the same time, the resulting solid nanocomposites showed, at the same doses, reduced or totally excluded cytotoxicity on mammalian somatic and tumoral cells. Data obtained in the present study suggest that adequately designed chitosan-silver nanocomposites are powerful and promising materials for reducing pathogenic microorganism-associated infections without harmful effects towards mammalian cells.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda