Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Electrophoresis ; 40(22): 3005-3013, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31495938

RESUMEN

In the bacterial signaling mechanisms known as two-component systems (TCSs), signals are generally conveyed by means of a His-Asp phosphorelay. Each system consists of a histidine kinase (HK) and its cognate response regulator. Because of the labile nature of phosphorylated His and Asp residues, few approaches are available that permit a quantitative analysis of their phosphorylation status. Here, we show that the Phos-tag dye technology is suitable for the fluorescent detection of His- and Asp-phosphorylated proteins separated by SDS-PAGE. The dynamics of the His-Asp phosphorelay of recombinant EnvZ-OmpR, a TCS derived from Escherichia coli, were examined by SDS-PAGE followed by simple rapid staining with Phos-tag Magenta fluorescent dye. The technique permitted not only the quantitative monitoring of the autophosphorylation reactions of EnvZ and OmpR in the presence of adenosine triphosphate (ATP) or acetyl phosphate, respectively, but also that of the phosphotransfer reaction from EnvZ to OmpR, which occurs within 1 min in the presence of ATP. Furthermore, we demonstrate profiling of waldiomycin, an HK inhibitor, by using the Phos-tag Cyan gel staining. We believe that the Phos-tag dye technology provides a simple and convenient fluorometric approach for screening of HK inhibitors that have potential as new antimicrobial agents.


Asunto(s)
Ácido Aspártico/análisis , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Colorantes Fluorescentes/análisis , Histidina/análisis , Complejos Multienzimáticos/metabolismo , Transducción de Señal/fisiología , Ácido Aspártico/metabolismo , Proteínas Bacterianas/metabolismo , Colorantes Fluorescentes/metabolismo , Histidina/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/fisiología , Transactivadores/metabolismo
2.
Dalton Trans ; 47(6): 1841-1848, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29334383

RESUMEN

Thiolate coordination to zinc(ii) ions occurs widely in such functional biomolecules as zinc enzymes or zinc finger proteins. Here, we introduce a simple method for determining the affinity of ligands toward the zinc-enzyme active-center model tetramethylrhodamine (TAMRA)-labeled 1,4,7,10-tetraazacyclododecane (cyclen)-zinc(ii) complex (TAMRA-ZnL). The 1 : 1 complexation of TAMRA-labeled cysteine (TAMRA-Cys) with TAMRA-ZnL (each at 2.5 µM), in which the TAMRA moieties approach one another closely, induces remarkable changes in the visible absorption and fluorescence spectra at pH 7.4 and 25 °C. The 1 : 1 complex formation constant (K = [thiolate-bound zinc(ii) complex]/[uncomplexed TAMRA-ZnL][uncomplexed TAMRA-Cys], M-1) was determined to be 106.7 M-1 from a Job's plot of the absorbances at 552 nm. By a ligand-competition method with the 1 : 1 complexation equilibrium, analogous K values for thiol-containing ligands, such as N-acetyl-l-cysteine, l-glutathione, and N-acetyl-l-cysteinamide, were evaluated to have similar values of about 104 M-1. As a result of the ligand affinities to TAMRA-ZnL, nonlabeled zinc(ii)-cyclen induced remarkable stabilization of the reduced form of l-glutathione and a cysteine-containing enolase peptide to aerial oxidation in aqueous solution at pH 7.4 and 25 °C.

3.
Artículo en Inglés | MEDLINE | ID: mdl-27498090

RESUMEN

Cysteine-containing biomolecules are attractive targets in the study of thiol biology. Here we introduce a novel method for the selective enrichment of thiol-containing molecules using a thiol-capture zinc(II) complex of 1,4,7,10-tetraazacyclododecane (Zn(2+)-cyclen). Recognition of N-acetylcysteine amide by Zn(2+)-cyclen has been studied by potentiometric pH titration, revealing formation of a 1:1 thiolate-bound Zn(2+)-cyclen complex with a large thiolate-affinity constant of 10(6.2)M(-1) at 25°C and I=0.10M (NaCl). The Zn(2+)-bound thiolate anion is unexpectedly stable in aqueous solution at pH 7.8 under atmospheric conditions for a few days. These findings have contributed to the development of a convenient method for separation of thiol compounds by using a micropipette tip. A 200µL micropipette tip containing 10µL of hydrophilic cross-linked agarose beads attached to Zn(2+)-cyclen moieties was prepared. All steps for thiol-affinity separation (binding, washing, and eluting) are conducted using aqueous buffers at room temperature. The entire separation protocol requires less than 15min per sample. We demonstrate practical example separations of cysteine-containing molecules. This micropipette tip method would be used preferentially as an alternative to existing tools for reliable enrichment of thiol-containing molecules.


Asunto(s)
Cisteína/química , Equipos y Suministros , Compuestos Heterocíclicos/química , Sefarosa/química , Zinc/química , Ciclamas , Potenciometría
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda