Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Nanosci Nanotechnol ; 16(2): 1802-5, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27433674

RESUMEN

This paper reports on the catalytic reaction for the conversion of silicon tetrachloride (STC) to trichlorosilane (TCS) over pretreated ordered mesoporous carbon (OMC) catalysts by oxygen (denoted as OMC-O2) and hydrochloric acid (denoted as OMC-HCl) at 300 degrees C under N2 atmosphere. The OMC-O2 shows significantly improved the surface area (1341.2 m2/g) and pore volume (1.65 cm3/g), which results in the highest conversion rate of 7.3% as compared to bare OMC (4.3%) and OMC-HCI (5.7%). It is found that the conversion rate of STC to TCS is proportional to the number of Si-O bond over OMC catalysts, which suggests that Si-O-C bond formation is crucial to the reaction as active sites. The O2 pretreatment seems to promote the generation of oxygenated species for the formation of Si-O-C.

2.
J Nanosci Nanotechnol ; 15(9): 6714-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26716234

RESUMEN

The steam-pretreatment on ordered-mesoporous carbon (OMC) catalysts was conducted to improve the catalytic properties for silicon tetrachloride (STC) to trichlorosilane (TCS) conversion. The surface area, pore size and pore volume of OMC were significantly changed as a function of pretreatment temperature. The steam-pretreated OMC at 500 degrees C exhibited the high surface area (-1476.4 m2/g) and pore volume (1.89 cm3/g), which leads the highest conversion rate of 10.8% as compared to bare-OMC (4.3%) and the steam-pretreated OMC. The steam-pretreatment on OMC might increase active oxygenated species, which promoted the generation of active sites of C-O-Si-for high conversion of STC to TCS.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda