Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Pediatr Blood Cancer ; 71(12): e31332, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39289866

RESUMEN

A 5-year-old female diagnosed with severe hemophilia B began experiencing frequent muscular and joint bleeds at 19 months old. Molecular studies, including Sanger sequencing, Giemsa banding, human androgen receptor (HUMARA) assay, array-based comparative genomic hybridization (aCGH), whole-exome sequencing (WES), and multiplex ligation-dependent probe amplification (MLPA), revealed a heterozygous factor IX (F9) intron 3 substitution (c.277+1G>T) inherited from her mother and a de novo heterozygous 441 kb deletion in the Xq28 region, which flanked intron 22 homologous regions 1 (int22h1) and 2 (int22h2). This rare genetic profile explains her severe phenotype and guides hereditary consultation for family planning.


Asunto(s)
Hemofilia B , Inactivación del Cromosoma X , Humanos , Femenino , Preescolar , Hemofilia B/genética , Cromosomas Humanos X/genética , Factor IX/genética , Deleción Cromosómica , Intrones
2.
Blood ; 138(14): 1225-1236, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34115827

RESUMEN

Cutaneous T-cell lymphomas (CTCLs) are a clinically heterogeneous collection of lymphomas of the skin-homing T cell. To identify molecular drivers of disease phenotypes, we assembled representative samples of CTCLs from patients with diverse disease subtypes and stages. Via DNA/RNA-sequencing, immunophenotyping, and ex vivo functional assays, we identified the landscape of putative driver genes, elucidated genetic relationships between CTCLs across disease stages, and inferred molecular subtypes in patients with stage-matched leukemic disease. Collectively, our analysis identified 86 putative driver genes, including 19 genes not previously implicated in this disease. Two mutations have never been described in any cancer. Functionally, multiple mutations augment T-cell receptor-dependent proliferation, highlighting the importance of this pathway in lymphomagenesis. To identify putative genetic causes of disease heterogeneity, we examined the distribution of driver genes across clinical cohorts. There are broad similarities across disease stages. Many driver genes are shared by mycosis fungoides (MF) and Sezary syndrome (SS). However, there are significantly more structural variants in leukemic disease, leading to highly recurrent deletions of putative tumor suppressors that are uncommon in early-stage skin-centered MF. For example, TP53 is deleted in 7% and 87% of MF and SS, respectively. In both human and mouse samples, PD1 mutations drive aggressive behavior. PD1 wild-type lymphomas show features of T-cell exhaustion. PD1 deletions are sufficient to reverse the exhaustion phenotype, promote a FOXM1-driven transcriptional signature, and predict significantly worse survival. Collectively, our findings clarify CTCL genetics and provide novel insights into pathways that drive diverse disease phenotypes.


Asunto(s)
Linfoma Cutáneo de Células T/genética , Transcriptoma , Animales , Células Cultivadas , Proteína Forkhead Box M1/genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Ratones , Mutación , Oncogenes , Proteína p53 Supresora de Tumor/genética
3.
PLoS Genet ; 16(1): e1008347, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31986135

RESUMEN

Detailed comprehensive knowledge of the structures of individual long-range telomere-terminal haplotypes are needed to understand their impact on telomere function, and to delineate the population structure and evolution of subtelomere regions. However, the abundance of large evolutionarily recent segmental duplications and high levels of large structural variations have complicated both the mapping and sequence characterization of human subtelomere regions. Here, we use high throughput optical mapping of large single DNA molecules in nanochannel arrays for 154 human genomes from 26 populations to present a comprehensive look at human subtelomere structure and variation. The results catalog many novel long-range subtelomere haplotypes and determine the frequencies and contexts of specific subtelomeric duplicons on each chromosome arm, helping to clarify the currently ambiguous nature of many specific subtelomere structures as represented in the current reference sequence (HG38). The organization and content of some duplicons in subtelomeres appear to show both chromosome arm and population-specific trends. Based upon these trends we estimate a timeline for the spread of these duplication blocks.


Asunto(s)
Genoma Humano , Población/genética , Telómero/genética , Evolución Molecular , Haplotipos , Humanos , Secuenciación de Nanoporos/métodos
4.
J Lipid Res ; 63(6): 100209, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460704

RESUMEN

Low levels of high density lipoprotein-cholesterol (HDL-C) are associated with an elevated risk of arteriosclerotic coronary heart disease. Heritability of HDL-C levels is high. In this research discovery study, we used whole-exome sequencing to identify damaging gene variants that may play significant roles in determining HDL-C levels. We studied 204 individuals with a mean HDL-C level of 27.8 ± 6.4 mg/dl (range: 4-36 mg/dl). Data were analyzed by statistical gene burden testing and by filtering against candidate gene lists. We found 120 occurrences of probably damaging variants (116 heterozygous; four homozygous) among 45 of 104 recognized HDL candidate genes. Those with the highest prevalence of damaging variants were ABCA1 (n = 20), STAB1 (n = 9), OSBPL1A (n = 8), CPS1 (n = 8), CD36 (n = 7), LRP1 (n = 6), ABCA8 (n = 6), GOT2 (n = 5), AMPD3 (n = 5), WWOX (n = 4), and IRS1 (n = 4). Binomial analysis for damaging missense or loss-of-function variants identified the ABCA1 and LDLR genes at genome-wide significance. In conclusion, whole-exome sequencing of individuals with low HDL-C showed the burden of damaging rare variants in the ABCA1 and LDLR genes is particularly high and revealed numerous occurrences in HDL candidate genes, including many genes identified in genome-wide association study reports. Many of these genes are involved in cancer biology, which accords with epidemiologic findings of the association of HDL deficiency with increased risk of cancer, thus presenting a new area of interest in HDL genomics.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipoalfalipoproteinemias , HDL-Colesterol/genética , Heterocigoto , Humanos , Secuenciación del Exoma
5.
Hum Mol Genet ; 29(11): 1922-1932, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32436959

RESUMEN

Hundreds of loci have been associated with blood pressure (BP) traits from many genome-wide association studies. We identified an enrichment of these loci in aorta and tibial artery expression quantitative trait loci in our previous work in ~100 000 Genetic Epidemiology Research on Aging study participants. In the present study, we sought to fine-map known loci and identify novel genes by determining putative regulatory regions for these and other tissues relevant to BP. We constructed maps of putative cis-regulatory elements (CREs) using publicly available open chromatin data for the heart, aorta and tibial arteries, and multiple kidney cell types. Variants within these regions may be evaluated quantitatively for their tissue- or cell-type-specific regulatory impact using deltaSVM functional scores, as described in our previous work. We aggregate variants within these putative CREs within 50 Kb of the start or end of 'expressed' genes in these tissues or cell types using public expression data and use deltaSVM scores as weights in the group-wise sequence kernel association test to identify candidates. We test for association with both BP traits and expression within these tissues or cell types of interest and identify the candidates MTHFR, C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3, VPS37B and PPCDC. Additionally, we examined two known QT interval genes, SCN5A and NOS1AP, in the Atherosclerosis Risk in Communities Study, as a positive control, and observed the expected heart-specific effect. Thus, our method identifies variants and genes for further functional testing using tissue- or cell-type-specific putative regulatory information.


Asunto(s)
Aterosclerosis/genética , Presión Sanguínea/genética , Sitios de Carácter Cuantitativo/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Aorta/fisiopatología , Aterosclerosis/fisiopatología , Presión Sanguínea/fisiología , Cromatina , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Corazón/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón/fisiopatología , Proteínas de la Membrana/genética , Arterias Tibiales/fisiopatología
6.
Genome Res ; 29(9): 1389-1401, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31481461

RESUMEN

Low copy repeats (LCRs) are recognized as a significant source of genomic instability, driving genome variability and evolution. The Chromosome 22 LCRs (LCR22s) mediate nonallelic homologous recombination (NAHR) leading to the 22q11 deletion syndrome (22q11DS). However, LCR22s are among the most complex regions in the genome, and their structure remains unresolved. The difficulty in generating accurate maps of LCR22s has also hindered localization of the deletion end points in 22q11DS patients. Using fiber FISH and Bionano optical mapping, we assembled LCR22 alleles in 187 cell lines. Our analysis uncovered an unprecedented level of variation in LCR22s, including LCR22A alleles ranging in size from 250 to 2000 kb. Further, the incidence of various LCR22 alleles varied within different populations. Additionally, the analysis of LCR22s in 22q11DS patients and their parents enabled further refinement of the rearrangement site within LCR22A and -D, which flank the 22q11 deletion. The NAHR site was localized to a 160-kb paralog shared between the LCR22A and -D in seven 22q11DS patients. Thus, we present the most comprehensive map of LCR22 variation to date. This will greatly facilitate the investigation of the role of LCR variation as a driver of 22q11 rearrangements and the phenotypic variability among 22q11DS patients.


Asunto(s)
Síndrome de Deleción 22q11/genética , Mapeo Cromosómico/métodos , Cromosomas Humanos Par 22/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Línea Celular , Inestabilidad Cromosómica , Evolución Molecular , Humanos , Hibridación Fluorescente in Situ , Primates/genética
7.
Mol Psychiatry ; 26(9): 5239-5250, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33483695

RESUMEN

Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3-2.8, one-sided p = 6.0 × 10-4), this enrichment did not replicate in an additional 9,929 BD cases and 14,018 controls (OR = 0.9, one-side p = 0.70). Although BD shares common variant heritability with schizophrenia, in the BSC sample we did not observe a significant enrichment of P-LP variants in SCZ GWAS genes, in two classes of neuronal synaptic genes (RBFOX2 and FMRP) associated with SCZ or in loss-of-function intolerant genes. In this study, the largest analysis of exonic variation in BD, individuals with BD do not carry a replicable enrichment of rare P-LP variants across the exome or in any of several groups of genes with biologic plausibility. Moreover, despite a strong shared susceptibility between BD and SCZ through common genetic variation, we do not observe an association between BD risk and rare P-LP coding variants in genes known to modulate risk for SCZ.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Trastorno Bipolar/genética , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética
8.
Am J Hum Genet ; 103(3): 319-327, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30193136

RESUMEN

The Clinical Sequencing Evidence-Generating Research (CSER) consortium, now in its second funding cycle, is investigating the effectiveness of integrating genomic (exome or genome) sequencing into the clinical care of diverse and medically underserved individuals in a variety of healthcare settings and disease states. The consortium comprises a coordinating center, six funded extramural clinical projects, and an ongoing National Human Genome Research Institute (NHGRI) intramural project. Collectively, these projects aim to enroll and sequence over 6,100 participants in four years. At least 60% of participants will be of non-European ancestry or from underserved settings, with the goal of diversifying the populations that are providing an evidence base for genomic medicine. Five of the six clinical projects are enrolling pediatric patients with various phenotypes. One of these five projects is also enrolling couples whose fetus has a structural anomaly, and the sixth project is enrolling adults at risk for hereditary cancer. The ongoing NHGRI intramural project has enrolled primarily healthy adults. Goals of the consortium include assessing the clinical utility of genomic sequencing, exploring medical follow up and cascade testing of relatives, and evaluating patient-provider-laboratory level interactions that influence the use of this technology. The findings from the CSER consortium will offer patients, healthcare systems, and policymakers a clearer understanding of the opportunities and challenges of providing genomic medicine in diverse populations and settings, and contribute evidence toward developing best practices for the delivery of clinically useful and cost-effective genomic sequencing in diverse healthcare settings.


Asunto(s)
Genoma Humano/genética , Adulto , Análisis Costo-Beneficio/métodos , Atención a la Salud/métodos , Europa (Continente) , Exoma/genética , Genómica/métodos , Humanos , National Human Genome Research Institute (U.S.) , Fenotipo , Estados Unidos , Secuenciación Completa del Genoma/métodos
9.
Hum Mutat ; 41(10): 1775-1782, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32652807

RESUMEN

Full genome analysis of a young girl with deafness, dystonia, central hypomyelination, refractory seizure, and fluctuating liver function impairment revealed a heterozygous, de novo variant in the BCAP31 gene on chromosome Xq28 (NM_001256447.2:c.92G>A), mutations of which caused the X-linked recessive severe neurologic disorder deafness, dystonia, and cerebral hypomyelination. Reverse transcription-polymerase chain reaction of the patient's white blood cells showed the absence of wild-type BCAP31 messenger RNA (mRNA) but the presence of two novel BCAP31 mRNAs. The major alternatively spliced mRNA is due to Exon 2 skipping and the utilization of a new initiation site in Exon 3 that leads to a frameshift and truncated transcript while the minor novel mRNA has a 110 nucleotide insertion to Exon 2. Phasing studies showed that the de novo variant arose in the paternal X chromosome. X chromosome inactivation assay was done and confirmed that the patient's maternal X chromosome was preferentially inactivated, providing evidence that the mutated BCAP31 gene was the one predominantly expressed. According to the American College of Medical Genetics and Genomics guideline, this variant is deemed "pathogenic" (PS2, PS3, PM2, PP3, and PP4) and deleterious. This is the first reported female patient in BCAP31-related syndrome resulted from skewed X-inactivation and a de novo mutation in the active X chromosome.


Asunto(s)
Proteínas de la Membrana , Inactivación del Cromosoma X , Exones/genética , Femenino , Heterocigoto , Humanos , Proteínas de la Membrana/genética , Mutación , Síndrome
10.
Genome Res ; 27(12): 2001-2014, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29118011

RESUMEN

Programmed DNA elimination is a developmentally regulated process leading to the reproducible loss of specific genomic sequences. DNA elimination occurs in unicellular ciliates and a variety of metazoans, including invertebrates and vertebrates. In metazoa, DNA elimination typically occurs in somatic cells during early development, leaving the germline genome intact. Reference genomes for metazoa that undergo DNA elimination are not available. Here, we generated germline and somatic reference genome sequences of the DNA eliminating pig parasitic nematode Ascaris suum and the horse parasite Parascaris univalens. In addition, we carried out in-depth analyses of DNA elimination in the parasitic nematode of humans, Ascaris lumbricoides, and the parasitic nematode of dogs, Toxocara canis. Our analysis of nematode DNA elimination reveals that in all species, repetitive sequences (that differ among the genera) and germline-expressed genes (approximately 1000-2000 or 5%-10% of the genes) are eliminated. Thirty-five percent of these eliminated genes are conserved among these nematodes, defining a core set of eliminated genes that are preferentially expressed during spermatogenesis. Our analysis supports the view that DNA elimination in nematodes silences germline-expressed genes. Over half of the chromosome break sites are conserved between Ascaris and Parascaris, whereas only 10% are conserved in the more divergent T. canis. Analysis of the chromosomal breakage regions suggests a sequence-independent mechanism for DNA breakage followed by telomere healing, with the formation of more accessible chromatin in the break regions prior to DNA elimination. Our genome assemblies and annotations also provide comprehensive resources for analysis of DNA elimination, parasitology research, and comparative nematode genome and epigenome studies.


Asunto(s)
ADN de Helmintos , Nematodos/genética , Empalme Alternativo , Animales , Ascaridoidea/genética , Ascaris suum/genética , Rotura Cromosómica , Puntos de Rotura del Cromosoma , Evolución Molecular , Femenino , Genoma , Mutación de Línea Germinal , Masculino , Anotación de Secuencia Molecular , ARN de Helminto/biosíntesis , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Cromosomas Sexuales , Telómero , Toxocara canis/genética , Transcriptoma
11.
J Allergy Clin Immunol ; 143(5): 1791-1802, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30367910

RESUMEN

BACKGROUND: Although inhaled corticosteroid (ICS) medication is considered the cornerstone treatment for patients with persistent asthma, few ICS pharmacogenomic studies have involved nonwhite populations. OBJECTIVE: We sought to identify genetic predictors of ICS response in multiple population groups with asthma. METHODS: The discovery group comprised African American participants from the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE) who underwent 6 weeks of monitored ICS therapy (n = 244). A genome-wide scan was performed to identify single nucleotide polymorphism (SNP) variants jointly associated (ie, the combined effect of the SNP and SNP × ICS treatment interaction) with changes in asthma control. Top associations were validated by assessing the joint association with asthma exacerbations in 3 additional groups: African Americans (n = 803 and n = 563) and Latinos (n = 1461). RNA sequencing data from 408 asthmatic patients and 405 control subjects were used to examine whether genotype was associated with gene expression. RESULTS: One variant, rs3827907, was significantly associated with ICS-mediated changes in asthma control in the discovery set (P = 7.79 × 10-8) and was jointly associated with asthma exacerbations in 3 validation cohorts (P = .023, P = .029, and P = .041). RNA sequencing analysis found the rs3827907 C-allele to be associated with lower RNASE2 expression (P = 6.10 × 10-4). RNASE2 encodes eosinophil-derived neurotoxin, and the rs3827907 C-allele appeared to particularly influence ICS treatment response in the presence of eosinophilic inflammation (ie, high pretreatment eosinophil-derived neurotoxin levels or blood eosinophil counts). CONCLUSION: We identified a variant, rs3827907, that appears to influence response to ICS treatment in multiple population groups and likely mediates its effect through eosinophils.


Asunto(s)
Corticoesteroides/uso terapéutico , Asma/tratamiento farmacológico , Negro o Afroamericano , Neurotoxina Derivada del Eosinófilo/genética , Eosinófilos/inmunología , Genotipo , Hispánicos o Latinos , Adolescente , Adulto , Asma/epidemiología , Asma/genética , Niño , Estudios de Cohortes , Progresión de la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Recuento de Leucocitos , Masculino , Inhaladores de Dosis Medida , Persona de Mediana Edad , Variantes Farmacogenómicas , Fenotipo , Polimorfismo de Nucleótido Simple , Resultado del Tratamiento , Estados Unidos/epidemiología , Adulto Joven
12.
BMC Genomics ; 20(1): 620, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31416423

RESUMEN

BACKGROUND: Data from the 1000 Genomes project is quite often used as a reference for human genomic analysis. However, its accuracy needs to be assessed to understand the quality of predictions made using this reference. We present here an assessment of the genotyping, phasing, and imputation accuracy data in the 1000 Genomes project. We compare the phased haplotype calls from the 1000 Genomes project to experimentally phased haplotypes for 28 of the same individuals sequenced using the 10X Genomics platform. RESULTS: We observe that phasing and imputation for rare variants are unreliable, which likely reflects the limited sample size of the 1000 Genomes project data. Further, it appears that using a population specific reference panel does not improve the accuracy of imputation over using the entire 1000 Genomes data set as a reference panel. We also note that the error rates and trends depend on the choice of definition of error, and hence any error reporting needs to take these definitions into account. CONCLUSIONS: The quality of the 1000 Genomes data needs to be considered while using this database for further studies. This work presents an analysis that can be used for these assessments.


Asunto(s)
Genoma Humano/genética , Haplotipos/genética , Grupos Raciales/genética , Frecuencia de los Genes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Proyecto Genoma Humano , Humanos , Polimorfismo de Nucleótido Simple , Grupos Raciales/etnología , Error Científico Experimental
13.
Nat Methods ; 13(7): 587-90, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27159086

RESUMEN

Despite tremendous progress in genome sequencing, the basic goal of producing a phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe an approach to performing de novo genome assembly and experimental phasing by integrating the data from Illumina short-read sequencing, 10X Genomics linked-read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Humano , Genómica/métodos , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
14.
Am J Respir Crit Care Med ; 197(12): 1552-1564, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29509491

RESUMEN

RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P < 3.53 × 10-7) and suggestive (P < 7.06 × 10-6) loci near genes previously associated with lung capacity (DNAH5), immunity (NFKB1 and PLCB1), and ß-adrenergic signaling (ADAMTS3 and COX18). Functional analyses of the BDR-associated SNP in NFKB1 revealed potential regulatory function in bronchial smooth muscle cells. The SNP is also an expression quantitative trait locus for a neighboring gene, SLC39A8. The lack of other asthma study populations with BDR and whole-genome sequencing data on minority children makes it impossible to perform replication of our rare variant associations. Minority underrepresentation also poses significant challenges to identify age-matched and population-matched cohorts of sufficient sample size for replication of our common variant findings. CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations.


Asunto(s)
Albuterol/uso terapéutico , Asma/tratamiento farmacológico , Broncodilatadores/uso terapéutico , Estudio de Asociación del Genoma Completo , Americanos Mexicanos/genética , Variantes Farmacogenómicas/genética , Factores Raciales , Adolescente , Negro o Afroamericano/genética , Niño , Femenino , Hispánicos o Latinos/genética , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Estados Unidos
15.
Nucleic Acids Res ; 45(9): e73, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28180280

RESUMEN

Accurate maps and DNA sequences for human subtelomere regions, along with detailed knowledge of subtelomere variation and long-range telomere-terminal haplotypes in individuals, are critical for understanding telomere function and its roles in human biology. Here, we use a highly automated whole genome mapping technology in nano-channel arrays to analyze large terminal human chromosome segments extending from chromosome-specific subtelomere sequences through subtelomeric repeat regions to terminal (TTAGGG)n repeat tracts. We establish detailed maps for subtelomere gap regions in the human reference sequence, detect many new large subtelomeric variants and demonstrate the feasibility of long-range haplotyping through segmentally duplicated subtelomere regions. These features make the method a uniquely valuable new tool for improving the quality of genome assemblies in complex DNA regions. Based on single molecule mapping of telomere-terminal DNA fragments, we provide proof of principle for a novel method to estimate telomere lengths linked to distinguishable telomeric haplotypes; this single-telomere genotyping method may ultimately enable delineation of human cis elements involved in telomere length regulation.


Asunto(s)
Mapeo Cromosómico/métodos , Haplotipos , Telómero/genética , Automatización , ADN , Estudios de Factibilidad , Variación Genética , Humanos , Secuencias Repetitivas de Ácidos Nucleicos
16.
Eur Heart J ; 39(44): 3961-3969, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30169657

RESUMEN

Aims: Sudden cardiac arrest (SCA) accounts for 10% of adult mortality in Western populations. We aim to identify potential loci associated with SCA and to identify risk factors causally associated with SCA. Methods and results: We carried out a large genome-wide association study (GWAS) for SCA (n = 3939 cases, 25 989 non-cases) to examine common variation genome-wide and in candidate arrhythmia genes. We also exploited Mendelian randomization (MR) methods using cross-trait multi-variant genetic risk score associations (GRSA) to assess causal relationships of 18 risk factors with SCA. No variants were associated with SCA at genome-wide significance, nor were common variants in candidate arrhythmia genes associated with SCA at nominal significance. Using cross-trait GRSA, we established genetic correlation between SCA and (i) coronary artery disease (CAD) and traditional CAD risk factors (blood pressure, lipids, and diabetes), (ii) height and BMI, and (iii) electrical instability traits (QT and atrial fibrillation), suggesting aetiologic roles for these traits in SCA risk. Conclusions: Our findings show that a comprehensive approach to the genetic architecture of SCA can shed light on the determinants of a complex life-threatening condition with multiple influencing factors in the general population. The results of this genetic analysis, both positive and negative findings, have implications for evaluating the genetic architecture of patients with a family history of SCA, and for efforts to prevent SCA in high-risk populations and the general community.


Asunto(s)
Arritmias Cardíacas/genética , Muerte Súbita Cardíaca/etiología , Arritmias Cardíacas/fisiopatología , Índice de Masa Corporal , Enfermedad de la Arteria Coronaria/genética , Femenino , Estudio de Asociación del Genoma Completo , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Medición de Riesgo/métodos , Factores de Riesgo , Factores Sexuales
17.
Hum Mutat ; 39(1): 167-171, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29067733

RESUMEN

Newborn screening (NBS) for rare conditions is performed in all 50 states in the USA. We have partnered with the California Department of Public Health Genetic Disease Laboratory to determine whether sufficient DNA can be extracted from archived dried blood spots (DBS) for next-generation sequencing in the hopes that next-generation sequencing can play a role in NBS. We optimized the DNA extraction and sequencing library preparation protocols for residual infant DBS archived over 20 years ago and successfully obtained acceptable whole exome and whole genome sequencing data. This sequencing study using DBS DNA without whole genome amplification prior to sequencing library preparation provides evidence that properly stored residual newborn DBS are a satisfactory source of DNA for genetic studies.


Asunto(s)
Pruebas con Sangre Seca , Secuenciación del Exoma , Secuenciación Completa del Genoma , Humanos , Técnicas de Amplificación de Ácido Nucleico , Análisis de Secuencia de ADN/métodos , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos
18.
Development ; 142(16): 2775-80, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26160899

RESUMEN

Endothelin signaling is essential for neural crest development, and dysregulated Endothelin signaling is associated with several neural crest-related disorders, including Waardenburg and other syndromes. However, despite the crucial roles of this pathway in neural crest development and disease, the transcriptional effectors directly activated by Endothelin signaling during neural crest development remain incompletely elucidated. Here, we establish that the MADS box transcription factor MEF2C is an immediate downstream transcriptional target and effector of Endothelin signaling in the neural crest. We show that Endothelin signaling activates Mef2c expression in the neural crest through a conserved enhancer in the Mef2c locus and that CRISPR-mediated deletion of this Mef2c neural crest enhancer from the mouse genome abolishes Endothelin induction of Mef2c expression. Moreover, we demonstrate that Endothelin signaling activates neural crest expression of Mef2c by de-repressing MEF2C activity through a Calmodulin-CamKII-histone deacetylase signaling cascade. Thus, these findings identify a MEF2C-dependent, positive-feedback mechanism for Endothelin induction and establish MEF2C as an immediate transcriptional effector and target of Endothelin signaling in the neural crest.


Asunto(s)
Endotelinas/metabolismo , Retroalimentación Fisiológica/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Cresta Neural/fisiología , Transducción de Señal/fisiología , Animales , Galactósidos , Hibridación in Situ , Indoles , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Transgénicos , Cresta Neural/metabolismo , beta-Galactosidasa
19.
Nat Methods ; 12(8): 780-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26121404

RESUMEN

We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.


Asunto(s)
Biología Computacional/métodos , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple , Algoritmos , Mapeo Cromosómico , Diploidia , Biblioteca de Genes , Variación Genética , Genoma , Haplotipos , Humanos , Nucleótidos/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Secuencias Repetidas en Tándem
20.
Bioinformatics ; 33(3): 311-319, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28172448

RESUMEN

Background: Optical mapping is a technique for capturing fluorescent signal patterns of long DNA molecules (in the range of 0.1­1 Mbp). Recently, it has been complementing the widely used short-read sequencing technology by assisting with scaffolding and detecting large and complex structural variations (SVs). Here, we introduce a fast, robust and accurate tool called OMBlast for aligning optical maps, the set of signal locations on the molecules generated from optical mapping. Our method is based on the seed-and-extend approach from sequence alignment, with modifications specific to optical mapping. Results: Experiments with both synthetic and our real data demonstrate that OMBlast has higher accuracy and faster mapping speed than existing alignment methods. Our tool also shows significant improvement when aligning data with SVs. Availability and Implementation: OMBlast is implemented for Java 1.7 and is released under a GPL license. OMBlast can be downloaded from https://github.com/aldenleung/OMBlast and run directly on machines equipped with a Java virtual machine. Contact: kevinyip@cse.cuhk.edu.hk and tf.chan@cuhk.edu.hk Supplementary Information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Mapeo de Restricción Óptica/métodos , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Caenorhabditis elegans/genética , Escherichia coli/genética , Genómica/métodos , Humanos , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda