Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Exp Brain Res ; 233(9): 2539-48, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26019011

RESUMEN

The hand, one of the most versatile but mechanically redundant parts of the human body, must overcome imperfect motor commands and inherent noise in both the sensory and motor systems in order to produce desired motor actions. For example, it is nearly impossible to produce a perfectly consistent note during a single violin stroke or to produce the exact same note over multiple strokes, which we denote online and offline control, respectively. To overcome these challenges, the central nervous system synergistically integrates multiple sensory modalities and coordinates multiple motor effectors. Among these sensory modalities, tactile sensation plays an important role in manual motor tasks by providing hand-object contact information. The purpose of this study was to investigate the role of tactile feedback in individual finger actions and multi-finger interactions during constant force production tasks. We developed analytical techniques for the linear decomposition of the overall variance in the motor system in both online and offline control. We removed tactile feedback from the fingers and demonstrated that tactile sensors played a critical role in the online control of synergistic interactions between fingers. In contrast, the same sensors did not contribute to offline control. We also demonstrated that when tactile feedback was removed from the fingers, the combined motor output of individual fingers did not change while individual finger behaviors did. This finding supports the idea of hierarchical control where individual fingers at the lower level work together to stabilize the performance of combined motor output at the higher level.


Asunto(s)
Dedos/fisiología , Sistemas en Línea , Desempeño Psicomotor/fisiología , Tacto/fisiología , Adulto , Análisis de Varianza , Femenino , Humanos , Masculino , Estimulación Física , Adulto Joven
2.
Arch Phys Med Rehabil ; 94(9): 1776-83, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23542403

RESUMEN

OBJECTIVES: (1) To test the validity of a trifilar pendulum in estimating moments of inertia (MOIs) for running-specific prostheses (RSPs), (2) to measure inertial properties (mass, center of mass [CM] position, and MOIs) for 4 RSPs, (3) to verify the influence of the stiffness on the inertial properties of RSPs, and (4) to develop a predictive equation to estimate RSP CM positions. DESIGN: An aluminum block with known MOIs was used for verifying the accuracy of the trifilar pendulum MOI measurements. MOI errors were investigated by systematically misaligning the block and pendulum principal axes across a range of 1 to 10cm. Mass, CM position, and MOI were tested across 4 RSP designs with 3 stiffness categories each. SETTING: University biomechanics laboratory. SPECIMENS: Four different RSP designs and 3 stiffness categories per design were examined. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: MOI errors from known values and principal axis misalignments between RSPs and pendulum; mass, CM positions, and RSP principal axis MOIs; and predictive equation CM position errors. RESULTS: The trifilar pendulum estimated MOIs within -6.21×10(-5)kg/m(2) (≤1% error) for a block with known MOIs. Misalignments of 1 to 5cm between the RSPs' and pendulum's CM yielded errors from .00002 to .00113 kg/m(2) (0.3%-59.2%). Each RSP's inertial properties are presented. MOIs about any axis varied <.004kg/m(2) across stiffness categories; MOIs differed up to .013kg/m(2) between different designs. The predictive CM equation erred between .010 and .028m when using average input values across an RSP design. CONCLUSIONS: Trifilar pendulums can accurately measure RSP MOI. The RSP inertial properties differed slightly across stiffness categories within each design, but differed more substantially across different RSP designs. Using a predictive equation to estimate RSP CM positions can provide adequate data, but directly measuring CM positions is preferable.


Asunto(s)
Amputados , Miembros Artificiales , Locomoción , Modalidades de Fisioterapia , Carrera , Fenómenos Biomecánicos , Humanos , Pierna , Reproducibilidad de los Resultados
3.
Sports Biomech ; : 1-14, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555347

RESUMEN

High-velocity actions are central to clinical and athletic performance, with jumping used to assess outcomes in sports medicine. Ground reaction force (GRF)-based methods are the standard for computing jump characteristics, but require mass estimation and GRF integration, potentially resulting in mass errors which influence outcomes. This study investigated how simulated mass errors influenced the centre of mass (CoM) trajectory during a countermovement jump. The mass was estimated from the static GRF, and simulated errors were added or subtracted to the mass. The CoM trajectory with simulated mass errors was computed using the GRF-based method to investigate mass mis-estimation's influence on jump height. A regression model indicated that, for a 1 kg mass change, there was a 7.7 cm jump height change, and the jump height differed by 11.5 ± 0.4 cm from the maximum to minimum error. A 2-way ANOVA identified significant height differences between the starting position, and landing, or final position with mass errors of ± 0.2 or ± 0.4 kg. These results reveal that small mass errors may produce inaccurate conclusions regarding performance changes, and that errors may propagate throughout the jump trajectory. Caution may be necessary when using GRF-based methods to compute jump height as a power proxy.

4.
Front Hum Neurosci ; 14: 549880, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192389

RESUMEN

Evidence from recent studies on animals and humans suggest that neural overflow from the primary sensory cortex (S1) to the primary motor cortex (M1) may play a critical role in motor control. However, it is unclear if whole-body maximal motor tasks are also governed by this mechanism. Maximum vertical squat jumps were performed by 15 young adults before cooling, then immediately following a 15-min cooling period using an ice-water bath for the foot soles, and finally immediately following a 15-min period of natural recovery from cooling. Jump heights were, on average, 3.1 cm lower immediately following cooling compared to before cooling (p = 3.39 × 10-8) and 1.9 cm lower following natural recovery from cooling (p = 0.00124). The average vertical ground reaction force (vGRF) was also lower by 78.2 N in the condition immediately following cooling compared to before cooling (p = 8.1 × 10-5) and 56.7N lower following natural recovery from cooling (p = 0.0043). The current study supports the S1-to-M1 overflow mechanism in a whole-body dynamic jump.

5.
Am J Phys Med Rehabil ; 98(3): 182-190, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29406403

RESUMEN

OBJECTIVE: The objective of this study was to investigate three-dimensional lower extremity joint moment differences between limbs and speed influences on these differences in individuals with lower extremity amputations using running-specific prostheses. DESIGN: Eight individuals with unilateral transtibial amputations and 8 control subjects with no amputations ran overground at three constant velocities (2.5, 3.0, and 3.5 m/sec). A 2 × 2 × 3 (group × leg × speed) repeated-measures analysis of variance with Bonferroni adjustments determined statistical significance. RESULTS: The prosthetic limb generated significantly greater peak ankle plantarflexion moments and smaller peak ankle varus, knee stance extension, knee swing flexion, knee internal rotation, hip stance flexion, hip swing flexion, hip swing extension, hip valgus, and hip external rotation moments than the intact limb did. The intact limb had greater peak hip external rotation moments than control limbs did, but all other peak moments were similar between these limbs. Increases in peak hip stance and knee swing flexion moments associated with speed were greater in the intact limb than in the prosthetic limb. CONCLUSION: Individuals with amputation relied on the intact limb more than the prosthetic limb to run at a particular speed when wearing running-specific prostheses, but the intact joints were not overloaded relative to the control limbs.


Asunto(s)
Amputación Quirúrgica/rehabilitación , Miembros Artificiales , Rango del Movimiento Articular , Carrera/fisiología , Adulto , Amputados , Fenómenos Biomecánicos , Articulación de la Cadera/fisiología , Humanos , Articulación de la Rodilla/fisiología , Masculino
6.
PLoS One ; 13(5): e0198084, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29851967

RESUMEN

Human central nervous system (CNS) undergoes neurological changes during the aging process, leading to declines in hand and finger functions. Previous studies have shown that the CNS can independently process multi-finger force control and moment of force control. However, if both force and moment control are simultaneously imposed by motor task constraints, the CNS needs to resolve competing interests of generating negative and positive covariances between fingers, respectively, which causes "conflict of interest or COI". Here, we investigated how aging affects the CNS's abilities to solve COI through a new experimental paradigm. Both elderly and young subjects performed a constant force production task using index and middle fingers under two conditions, multi-finger pressing with no COI and with COI. We found that the elderly increased variance of a virtual finger (VF: an imagined finger producing the same mechanical effect as both fingers together) in time-to-time basis (i.e. online control), while increasing covariance between individual fingers (IF) forces in trial-to-trial basis (i.e. offline control) with COI than no COI. Aging affects the CNS's abilities to solve COI by deteriorating VF actions in online control and IF actions in offline control.


Asunto(s)
Envejecimiento/fisiología , Dedos/fisiología , Fuerza de la Mano/fisiología , Anciano , Sistema Nervioso Central/fisiología , Femenino , Humanos , Masculino , Sistemas en Línea , Adulto Joven
7.
Sci Rep ; 8(1): 13708, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209342

RESUMEN

When a person plays a musical instrument, sound is produced and the integrated frequency and intensity produced are perceived aurally. The central nervous system (CNS) receives defective afferent signals from auditory systems and delivers imperfect efferent signals to the motor system due to the noise in both systems. However, it is still little known about auditory-motor interactions for successful performance. Here, we investigated auditory-motor interactions as multi-sensory input and multi-motor output system. Subjects performed a constant force production task using four fingers in three different auditory feedback conditions, where either the frequency (F), intensity (I), or both frequency and intensity (FI) of an auditory tone changed with sum of finger forces. Four levels of uncertainty (high, moderate-high, moderate-low, and low) were conditioned by manipulating the feedback gain of the produced force. We observed performance enhancement under the FI condition compared to either F or I alone at moderate-high uncertainty. Interestingly, the performance enhancement was greater than the prediction of the Bayesian model, suggesting super-optimality. We also observed deteriorated synergistic multi-finger interactions as the level of uncertainty increased, suggesting that the CNS responded to increased uncertainty by changing control strategy of multi-finger actions.


Asunto(s)
Corteza Auditiva/fisiología , Retroalimentación Sensorial/fisiología , Corteza Motora/fisiología , Adulto , Teorema de Bayes , Dedos/fisiología , Humanos , Masculino , Desempeño Psicomotor/fisiología , Incertidumbre , Adulto Joven
8.
J Biomech ; 60: 248-252, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28705487

RESUMEN

Compared to intact limbs, running-specific prostheses have high resonance non-biologic materials and lack active tissues to damp high frequencies. These differences may lead to ground reaction forces (GRFs) with high frequency content. If so, ubiquitously applying low-pass filters to prosthetic and intact limb GRFs may attenuate veridical high frequency content and mask important and ecologically valid data from prostheses. To explore differences in frequency content between prosthetic and intact limbs we divided signal power from transtibial unilateral amputees and controls running at 2.5, 3.0, and 3.5m/s into Low (<10Hz), High (10-25Hz), and Non-biologic (>25Hz) frequency bandwidths. Faster speeds tended to reduce the proportion of signal power in the Low bandwidth while increasing it in the High and Non-biologic bandwidths. Further, prostheses had lower proportions of signal power at the High frequency bandwidth but greater proportions at the Non-biologic bandwidth. To evaluate whether these differences in frequency content interact with filter cut-offs and alter results, we filtered GRFs with cut-offs from 1 to 100Hz and calculated vertical impact peak (VIP). Changing cut-off had inconsistent effects on VIP across speeds and limbs: Faster speeds had significantly larger changes in VIP per change in cut-off while, compared to controls, prosthetic limbs had significantly smaller changes in VIP per change in cut-off. These findings reveal differences in GRF frequency content between prosthetic and intact limbs and suggest that a cut-off frequency that is appropriate for one limb or speed may be inappropriate for another.


Asunto(s)
Amputados , Miembros Artificiales , Extremidades/fisiología , Carrera/fisiología , Adulto , Fenómenos Biomecánicos , Humanos , Masculino , Adulto Joven
9.
Front Hum Neurosci ; 10: 260, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375457

RESUMEN

Humans detect changes in the air pressure and understand the surroundings through the auditory system. The sound humans perceive is composed of two distinct physical properties, frequency and intensity. However, our knowledge is limited how the brain perceives and combines these two properties simultaneously (i.e., intra-auditory integration), especially in relation to motor behaviors. Here, we investigated the effect of intra-auditory integration between the frequency and intensity components of auditory feedback on motor outputs in a constant finger-force production task. The hierarchical variability decomposition model previously developed was used to decompose motor performance into mathematically independent components each of which quantifies a distinct motor behavior such as consistency, repeatability, systematic error, within-trial synergy, or between-trial synergy. We hypothesized that feedback on two components of sound as a function of motor performance (frequency and intensity) would improve motor performance and multi-finger synergy compared to feedback on just one component (frequency or intensity). Subjects were instructed to match the reference force of 18 N with the sum of all finger forces (virtual finger or VF force) while listening to auditory feedback of their accuracy. Three experimental conditions were used: (i) condition F, where frequency changed; (ii) condition I, where intensity changed; (iii) condition FI, where both frequency and intensity changed. Motor performance was enhanced for the FI conditions as compared to either the F or I condition alone. The enhancement of motor performance was achieved mainly by the improved consistency and repeatability. However, the systematic error remained unchanged across conditions. Within- and between-trial synergies were also improved for the FI condition as compared to either the F or I condition alone. However, variability of individual finger forces for the FI condition was not significantly decreased as compared to I condition alone. This result indicates an improvement in motor performance is consistent with Bayesian estimation, and changes in multi-finger interaction mostly result in the enhanced motor performance. These findings provide evidence that the central nervous system can take advantage of the intra-auditory integration in a statistically optimal (Bayesian) fashion to enhance motor performance by improving multi-finger synergy.

10.
Clin Biomech (Bristol, Avon) ; 36: 52-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27214246

RESUMEN

BACKGROUND: Adolescent idiopathic scoliosis is a prevalent orthopedic problem in children ages 10 to 16years. Although genetic, physiological and biomechanical factors are considered to contribute to the onset and progression of adolescent idiopathic scoliosis, the underlying mechanisms are not yet clear. The purpose of this study was to investigate the association between spinal deformity and inter-leg ground reaction force asymmetry during walking in adolescent idiopathic scoliosis patients. METHODS: Fourteen patients (3 males and 11 females) participated in this study. Maximum Cobb's angle, adjusted Cobb's angle, and pelvic tilt were calculated from X-ray images. Asymmetry indices between legs were also calculated from ground reaction force magnitude and time variables from their preferred speed walking. Pearson coefficients of correlation were used to investigate associations of asymmetry indices with angle variables. FINDINGS: Asymmetry indices of ground reaction force magnitudes positively correlated with adjusted Cobb's angle and maximum Cobb's angle mainly during the peak of braking phase, average of braking phase, while asymmetry indices of ground reaction force time variables showed no significant correlation with adjusted or maximum Cobb's angle. In contrast, asymmetry indices of ground reaction force time variables positively correlated with pelvic tilt during stance phase. INTERPRETATION: We concluded that the spinal deformity of adolescent idiopathic scoliosis patients estimated using the maximum and adjusted Cobb's angles is generally associated with greater asymmetry of ground reaction force magnitudes in walking, while the pelvic tilt is associated with the greater asymmetry of ground reaction force time variables.


Asunto(s)
Marcha/fisiología , Pelvis/fisiopatología , Escoliosis/fisiopatología , Caminata/fisiología , Soporte de Peso/fisiología , Adolescente , Niño , Progresión de la Enfermedad , Femenino , Humanos , Cifosis/fisiopatología , Masculino , Fenómenos Mecánicos
11.
Gait Posture ; 39(1): 386-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24035367

RESUMEN

Carbon fiber running-specific prostheses (RSPs) have allowed individuals with lower extremity amputation (ILEA) to actively participate in sporting activities including competitive sports. In spite of this positive trait, the RSPs have not been thoroughly evaluated regarding potential injury risks due to abnormal loading during running. Vertical impact peak (VIP) and average loading rate (VALR) of the vertical ground reaction force (vGRF) have been associated with running injuries in able-bodied runners but not for ILEA. The purpose of this study was to investigate vGRF loading in ILEA runners using RSPs across a range of running speeds. Eight ILEA with unilateral transtibial amputations and eight control subjects performed overground running at three speeds (2.5, 3.0, and 3.5m/s). From vGRF, we determined VIP and VALR, which was defined as the change in force divided by the time of the interval between 20 and 80% of the VIP. We observed that VIP and VALR increased in both ILEA and control limbs with an increase in running speed. Further, the VIP and VALR in ILEA intact limbs were significantly greater than ILEA prosthetic limbs and control subject limbs for this range of running speeds. These results suggest that (1) loading variables increase with running speed not only in able-bodied runners, but also in ILEA using RSPs, and (2) the intact limb in ILEA may be exposed to a greater risk of running related injury than the prosthetic limb or able-bodied limbs.


Asunto(s)
Amputación Quirúrgica , Miembros Artificiales , Marcha/fisiología , Carrera/lesiones , Deportes para Personas con Discapacidad , Adulto , Fenómenos Biomecánicos , Estudios de Casos y Controles , Humanos , Pierna , Masculino , Persona de Mediana Edad , Diseño de Prótesis , Carrera/fisiología , Adulto Joven
12.
J Biomech ; 46(14): 2483-9, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23953671

RESUMEN

Carbon fiber running-specific prostheses (RSPs) have allowed individuals with lower extremity amputation (ILEA) to participate in running. It has been established that as running speed increases, leg stiffness (Kleg) remains constant while vertical stiffness (Kvert) increases in able-bodied runners. The Kvert further depends on a combination of the torsional stiffnesses of the joints (joint stiffness; Kjoint) and the touchdown joint angles. Thus, an increased understanding of spring-like leg function and stiffness regulation in ILEA runners using RSPs is expected to aid in prosthetic design and rehabilitation strategies. The aim of this study was to investigate stiffness regulation to various overground running speeds in ILEA wearing RSPs. Eight ILEA performed overground running at a range of running speeds. Kleg, Kvert and Kjoint were calculated from kinetic and kinematic data in both the intact and prosthetic limbs. Kleg and Kvert in both the limbs remained constant when running speed increased, while intact limbs in ILEA running with RSPs have a higher Kleg and Kvert than residual limbs. There were no significant differences in Kankle, Kknee and touchdown knee angle between the legs at all running speeds. Hip joints in both the legs did not demonstrate spring-like function; however, distinct impact peaks were observed only in the intact leg hip extension moment at the early stance phase, indicating that differences in Kvert between limbs in ILEA are due to attenuating shock with the hip joint. Therefore, these results suggest that ILEA using RSPs has a different stiffness regulation between the intact and prosthetic limbs during running.


Asunto(s)
Miembros Artificiales , Pierna/fisiología , Carrera/fisiología , Amputados , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos , Articulación de la Cadera/fisiología , Humanos , Articulación de la Rodilla/fisiología , Locomoción , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda