Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sci Rep ; 13(1): 7261, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142679

RESUMEN

Cucumber mosaic virus (CMV) is one of the most prevalent plant viruses in the world, and causes severe damage to various crops. CMV has been studied as a model RNA virus to better understand viral replication, gene functions, evolution, virion structure, and pathogenicity. However, CMV infection and movement dynamics remain unexplored due to the lack of a stable recombinant virus tagged with a reporter gene. In this study, we generated a CMV infectious cDNA construct tagged with a variant of the flavin-binding LOV photoreceptor (iLOV). The iLOV gene was stably maintained in the CMV genome after more than four weeks of three serial passages between plants. Using the iLOV-tagged recombinant CMV, we visualized CMV infection and movement dynamics in living plants in a time course manner. We also examined whether CMV infection dynamics is influenced by co-infection with broad bean wilt virus 2 (BBWV2). Our results revealed that no spatial interference occurred between CMV and BBWV2. Specifically, BBWV2 facilitated the cell-to-cell movement of CMV in the upper young leaves. In addition, the BBWV2 accumulation level increased after co-infection with CMV.


Asunto(s)
Coinfección , Cucumovirus , Infecciones por Citomegalovirus , Vicia faba , Virosis , Plantas/genética , Vicia faba/genética , ARN Viral/genética , Enfermedades de las Plantas
2.
Virus Evol ; 6(2): veaa070, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33240527

RESUMEN

Understanding the evolutionary history of a virus and the mechanisms influencing the direction of its evolution is essential for the development of more durable strategies to control the virus in crop fields. While the deployment of host resistance in crops is the most efficient means to control various viruses, host resistance itself can act as strong selective pressure and thus play a critical role in the evolution of virus virulence. Cucumber mosaic virus (CMV), a plant RNA virus with high evolutionary capacity, has caused endemic disease in various crops worldwide, including pepper (Capsicum annuum L.), because of frequent emergence of resistance-breaking variants. In this study, we examined the molecular and evolutionary characteristics of recently emerged, resistance-breaking CMV variants infecting pepper. Our population genetics analysis revealed that the high divergence capacity of CMV RNA1 might have played an essential role in the host-interactive evolution of CMV and in shaping the CMV population structure in pepper. We also demonstrated that nonsynonymous mutations in RNA1 encoding the 1a protein enabled CMV to overcome the deployed resistance in pepper. Our findings suggest that resistance-driven selective pressures on RNA1 might have contributed in shaping the unique evolutionary pattern of CMV in pepper. Therefore, deployment of a single resistance gene may reduce resistance durability against CMV and more integrated approaches are warranted for successful control of CMV in pepper.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda