Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Chem Phys ; 157(14): 144703, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36243533

RESUMEN

We performed fixed-node diffusion Monte Carlo (DMC) calculations to investigate structural and energetic properties of graphenylene (GPNL), a two-dimensional network of sp2-bonded carbon atoms with large near-circular pores, and its H2 separation performance for gas mixtures. We have found that the energetic stability of a GPNL monolayer is comparable to that of γ-graphyne, as evidenced by its large cohesive energy of 6.755(3) eV/atom. Diffusion barriers of several gas molecules, including hydrogen, through a GPNL membrane were determined from the analysis of their adsorption energies depending on the adsorption distance, which led to our estimation for hydrogen selectivity with respect to other target molecules. DMC hydrogen selectivity of a GPNL monolayer was found to be exceptionally high at 300 K, as high as 1010-1011 against CO and N2 gases. This, along with high hydrogen permeance due to its generic pore structure, leads us to conclude that GPNL is a promising membrane to be used as a high-performance hydrogen separator from gas mixtures. We find that when compared to our DMC results, DFT calculations tend to overestimate H2 selectivity, which is mostly due to their inaccurate description of short-range repulsive interactions.

2.
Phys Chem Chem Phys ; 23(38): 22147-22154, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34580679

RESUMEN

Diffusion Monte Carlo (DMC) calculations have been performed to study the adsorption of a single Pt atom on pristine graphene. We obtain the adsorption energy curves of a single Pt atom adsorbed at three different adsorption sites (bridge, on-top, hollow) as functions of the vertical distance from a graphene surface for both spin singlet and triplet states. The bridge-site adsorption in a singlet spin state is found to be energetically most stable, which is consistent with previous theoretical predictions. As the Pt atom moves away from a graphene surface, spin triplet states are favored over spin singlet states for all three adsorption sites, reflecting that the ground state of an isolated Pt atom is in a spin triplet state. Furthermore, our DMC calculations reveal local-minimum features in the triplet region which is understood to be due to van der Waals interaction between the Pt atom and graphene. This provides a comprehensive understanding for a spin crossing from a physisorbed triplet state to a chemisorbed singlet state in the adsorption process of a single Pt atom on graphene.

3.
J Phys Chem A ; 124(18): 3636-3640, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32298116

RESUMEN

Structural properties and energetics of carbon rings are studied with the diffusion Monte Carlo (DMC) method. Our DMC-based geometry optimization reveals that both polyynic C4n and cumulenic C4n + 2 rings exhibit bond length alternations for n ≥ 3, which is understood to be due to Jahn-Teller distortions. The bond length alternation even in a cumulenic (4n + 2) carbon ring was experimentally observed in a recently synthesized C18 molecule. From a comparison of the DMC cohesive energies of C4n with those of C4n + 2, we present a comprehensive picture of the competition between Hückel's rule and Jahn-Teller distortion in small carbon rings; the former is more dominant than the latter for n < 5 where C4n + 2 rings are more stable than C4n, while C4n rings are as stable as C4n + 2 for n < 5 where dimerization effects due to Jahn-Teller distortion are more important.

4.
J Chem Phys ; 143(10): 104311, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26374039

RESUMEN

We have performed path-integral Monte Carlo calculations to study the adsorption of (4)He atoms on two different C36 isomers with the D6h and the D2d symmetries. The radial (4)He density distributions reveal layer-by-layer growth with the first layer being located at a distance of ∼5.5 Å from the C36 molecular center and the second layer at ∼8.3 Å. From the angular density profiles of (4)He, we find different quantum states as the number of (4)He adatoms N varies. For N = 20, we observe commensurate solid structures on both D6h and D2d isomers, where each of 8 hexagon and 12 pentagon centers of the fullerene surfaces is occupied by a single (4)He atom. The second-layer promotion starts beyond N = 38 on both isomers, where a compressible incommensurate structure is observed on the D6h isomer and another commensurate structure on D2d. Between N = 20 and N = 38, the (4)He monolayer on D6h shows several distinct rings of delocalized (4)He atoms along with strongly anisotropic superfluid responses at low temperatures, while isotropic but weak superfluid responses are observed in the (4)He layer on D2d.

5.
Phys Chem Chem Phys ; 16(19): 8935-9, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24691588

RESUMEN

Functionalization of graphdiyne, a two-dimensional atomic layer of sp-sp(2) hybrid carbon networks, was investigated through first-principles calculations. Hydrogen or halogen atoms preferentially adsorb on sp-bonded carbon atoms rather than on sp(2)-bonded carbon atoms, forming sp(2)- or sp(3)-hybridization. The energy band gap of graphdiyne is increased from ~0.5 eV to ~5.2 eV through the hydrogenation or halogenation. Unlike graphene, segregation of adsorbing atoms is energetically unfavourable. Our results show that hydrogenation or halogenation can be utilized for modifying the electronic properties of graphdiyne for applications to nano-electronics and -photonics.

6.
J Chem Phys ; 140(11): 114702, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24655193

RESUMEN

We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp(3)-bonded diamond, sp(2)-bonded graphene, sp-sp(2) hybridized graphynes, and sp-bonded carbyne. The computed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values determined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases systematically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of γ-graphyne, the most energetically stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experimental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally, we conclude that the cohesive energy of a newly proposed graphyne can be accurately estimated with the carbon-carbon bond energies determined from the cohesive energies of graphene and three different graphynes considered here.

7.
J Chem Phys ; 138(6): 064307, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23425471

RESUMEN

The path-integral Monte Carlo calculations have been performed to investigate the effects of (3)He impurities on structural and superfluid properties of the (4)He monolayer on a single C(20) molecule. According to our previous study, the helium monolayer exhibits different quantum states for different numbers of (4)He adatoms and is completed to form a commensurate solid where nanoscale supersolidity can be realized through the activation of mobile vacancy states. We first observe that different structures for different numbers of helium atoms are mostly preserved with the replacement of a few (4)He atoms with the same number of (3)He atoms, whether the helium layer is a fluid or a solid. However, the substitution of (3)He impurities is found to have different effects on the superfluid response of the helium layer, depending on its quantum state. For a partially-filled fluid layer the superfluid fraction decreases monotonically with the increasing (3)He concentration, which can be understood in terms of the suppression of exchange couplings among (4)He atoms due to the presence of (3)He impurities. On the other hand, the substitution of a few (3)He impurity atoms may increase the superfluid fraction of a near-complete monolayer that is in a crystalline solid state. The enhancement of superfluidity in a solid layer is interpreted to be due to interstitial and vacancy defects promoted by larger quantum fluctuations of lighter (3)He atoms. This provides strong evidence that the (4)He monolayer on C(20) shows the vacancy-based supersolidity near its completion.

8.
J Chem Phys ; 136(6): 064514, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22360202

RESUMEN

Path-integral Monte Carlo calculations have been performed to study (4)He adsorption on a single C(60) molecule. Helium corrugations on the fullerene molecular surface are incorporated with the (4)He-C(60) interaction described by the sum of all (4)He-C interatomic pair potentials. Radial density distributions show a layer-by-layer growth of (4)He with the first adlayer being located at a distance of ~6.3 Å from the center of the C(60) molecule. The monolayer shows different quantum states as the number of (4)He adatoms N varies. For N = 32, we find a commensurate solid, with each of the 32 adsorption sites on the molecular surface being occupied by a single (4)He atom. Various domain-wall structures are observed as more (4)He atoms are added and the first layer crystallizes into an incommensurate solid when it is completely filled. This commensurate-incommensurate transition of the helium monolayer is found to be accompanied by re-entrant superfluid response at a low temperature of 0.31 K with the superfluidity being totally quenched at N = 32, 44, and 48. Finally, the different quantum states observed in the helium monolayer around C(60) are compared with phase diagrams proposed for the corresponding layer on a graphite surface.

9.
J Phys Chem Lett ; 12(45): 10981-10986, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34738824

RESUMEN

We have carried out diffusion Monte Carlo calculations for an A1B-1-stacked bilayer blue phosphorene to find that it undergoes a semiconductor-metal transition as the interlayer distance decreases. While the most stable bilayer structure is a semiconducting one with two monolayers coupled through a weak van der Waals interaction, the metallic bilayer at a shorter interlayer distance is found to be only metastable. This is in contrast to a recent theoretical prediction based on a random phase approximation that the metallic phase would be the most stable bilayer configuration of blue phosphorene. Our analysis of charge density distributions reveals that the metastable metallic phase is induced by interlayer chemical bonding and intralayer charge redistributions. This study enriches our understanding of interlayer binding of a blue phosphorene and contributes to the establishment of correct energetic order between its different phases, which will be essential in devising an experimental pathway for a metallic phosphorene.

10.
ACS Appl Mater Interfaces ; 12(47): 53134-53140, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33179499

RESUMEN

Temperature-independent magnetoresistance (TIMR) has been studied for applications in magnetic field sensors operating in wide temperature ranges. Graphene is considered as one of the best candidates for achieving nonsaturating and large TIMR through engineering disorders. Nevertheless, large TIMR has not been achieved in disordered graphene with intrinsic defects, such as chemical doping and atomic dislocations. In this work, by introducing extrinsic defects, we realize nonsaturating and large TIMR in monolayer graphene transferred on a BiFeO3 nanoisland array (G/BFO-NIA). Furthermore, the G/BFO-NIA device exhibits a significantly larger MR (∼250% under 9 T) than other materials without gating operation, demonstrating its application feasibility. It is shown that the large MR is a result of the coexistence of electrons and holes with almost the same density, and the observed TIMR originates from the temperature dependence of carrier transport in graphene and of the dielectric property of BFO-NIA.

11.
ACS Omega ; 3(9): 10554-10563, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459179

RESUMEN

Nanomaterials, such as zeolites and metal-organic frameworks, have been studied for CO2 capture and sequestration. However, this application of nanomaterials has been limited largely due to their poor selectivity for flue gases as well as low capture capacity under low pressures. The first-principle density-functional theory calculations for porphyrin-like graphene decorated with a transition metal were performed to investigate the effects of mechanical strain on its CO2 capture capacity. We found that Sc- and V-decorated porphyrin-like graphenes could capture CO2 molecules selectively from gaseous mixtures under low CO2 pressure with compressive strain and release them with tensional strain at room temperatures. The CO2 binding to these transition metals was understood to be mostly due to the Dewar interaction involving hybridization of the metal d orbitals with π orbitals of CO2. These results elucidate a novel approach to the CO2 capture process with the application of the mechanical strain to nanomaterials.

12.
J Chem Theory Comput ; 13(11): 5639-5646, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-28945968

RESUMEN

α-Graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands, and the other, a tunable band gap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult to model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that interlayer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) meV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.

14.
Sci Rep ; 6: 21788, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26902156

RESUMEN

Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10(-3) bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.

15.
Artículo en Inglés | MEDLINE | ID: mdl-24827204

RESUMEN

We perform path-integral Monte Carlo calculations to study the adsorption of 4He atoms on a H2-plated C20 molecular surface. It is found that 32 H2 molecules form a complete solid layer on C20, where each H2 molecule is located either above one of the 12 pentagon centers or above one of the 20 carbon atoms. The angular density profiles of the first 4He layer on the (H2)32-C20 surface reveal different quantum states as the number of 4He atoms N varies. Especially, the helium layer exhibits an icosidodecahedron structure for N=30, where each 4He atom is located at one of the vertices of 20 corner-sharing triangles. While the 4He density peaks for N=60 constitute a truncated icosahedron with 12 pentagonal and 20 hexagonal faces, the additional atoms beyond N=60 are found to be placed at the hexagon centers of the truncated icosahedron to form a hexakis truncated icosahedron for N=80. The superfluid response of the 4He layer at a temperature of T=0.6 K is found to be completely quenched for N=30 and to be significantly suppressed for N=60 and 80, reflecting the formation of compact buckyball structures.

16.
J Phys Condens Matter ; 26(38): 385301, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25185708

RESUMEN

Using density-functional calculations (DFT) and a tight-binding model, we investigate the origin of distinct favorable geometries which depend on the type of graphyne used. The change in the H geometry is described in terms of the tuning of the hopping between sp(2)-bonded C atoms and sp-bonded C atoms hybridized with the H atoms. We find that the different preferred geometry for each type of graphyne is associated with the electronic effects due to different symmetries rather than a steric effect minimizing the repulsive interaction between the H atoms. The band gaps are significantly tuned as the hopping varies, except in α-graphyne, in agreement with the result of our previous DFT study (Koo J et al 2013 J. Phys. Chem. C 117 11960). Our model can be used to describe the geometry and electronic properties of hydrogenated graphynes.

17.
J Chem Phys ; 123(5): 054307, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16108639

RESUMEN

Recent measurements of the emission spectrum of phthalocyanine solvated in superfluid helium nanodroplets exhibit a constant 10.3 cm(-1) splitting of each emission line relative to the absorption spectrum. This splitting has been attributed to two distinct helium environments near the surface of the phthalocyanine molecule. Rigid-body path-integral Monte Carlo provides a means of investigating the origin of the splitting on a detailed microscopic level. Path-integral Monte Carlo simulations of 4He(N)-phthalocyanine at 0.625 K with N ranging from 24 to 150 show two distinct helium configurations. One configuration is commensurate with the molecular substrate and the other is a triangular lattice. We investigate the energetics of these two configurations and use a method for calculating electronic spectral shifts for aromatic molecule-rare-gas clusters due to dispersive interactions to estimate the spectral splitting that would arise from the two helium configurations seen for N=150. The results are in reasonable agreement with the experimentally measured splitting, supporting the existence of two distinct local helium environments near the surface of the molecule in the nanodroplets.

18.
Phys Rev Lett ; 89(27): 273401, 2002 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-12513206

RESUMEN

We present a microscopic quantum theoretical analysis of the nanoscale superfluid properties of solvating clusters of para-H2 around the linear OCS molecule. Path-integral calculations with N=17 para-H2 molecules, constituting a full solvation shell, show the appearance of a significant superfluid response to rotation around the molecular axis at T=0.15 K. This low-temperature superfluid response is highly anisotropic and drops sharply as the temperature increases to T approximately 0.3 K. These calculations provide definitive theoretical evidence that an anisotropic superfluid state exists for molecular hydrogen in this microscopic solvation layer.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda