Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Genet ; 39(1): 120-5, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17159978

RESUMEN

Infections with the malaria parasite Plasmodium falciparum result in more than 1 million deaths each year worldwide. Deciphering the evolutionary history and genetic variation of P. falciparum is critical for understanding the evolution of drug resistance, identifying potential vaccine candidates and appreciating the effect of parasite variation on prevalence and severity of malaria in humans. Most studies of natural variation in P. falciparum have been either in depth over small genomic regions (up to the size of a small chromosome) or genome wide but only at low resolution. In an effort to complement these studies with genome-wide data, we undertook shotgun sequencing of a Ghanaian clinical isolate (with fivefold coverage), the IT laboratory isolate (with onefold coverage) and the chimpanzee parasite P. reichenowi (with twofold coverage). We compared these sequences with the fully sequenced P. falciparum 3D7 isolate genome. We describe the most salient features of P. falciparum polymorphism and adaptive evolution with relation to gene function, transcript and protein expression and cellular localization. This analysis uncovers the primary evolutionary changes that have occurred since the P. falciparum-P. reichenowi speciation and changes that are occurring within P. falciparum.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma de Protozoos , Plasmodium falciparum/genética , Animales , Femenino , Especiación Genética , Ghana , Humanos , Malaria Falciparum/parasitología , Sistemas de Lectura Abierta , Pan troglodytes , Plasmodium/genética , Polimorfismo de Nucleótido Simple
2.
Mol Microbiol ; 90(3): 519-37, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23980881

RESUMEN

Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites.


Asunto(s)
Variación Antigénica , Nucléolo Celular/fisiología , Cromosomas , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Mapeo Cromosómico , ADN Protozoario , ADN Ribosómico/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Sitios Genéticos , Genoma de Protozoos , Modelos Genéticos , Conformación de Ácido Nucleico , Análisis de Secuencia de ADN
3.
PLoS Pathog ; 7(3): e1001306, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21408201

RESUMEN

Many pathogenic bacteria, fungi, and protozoa achieve chronic infection through an immune evasion strategy known as antigenic variation. In the human malaria parasite Plasmodium falciparum, this involves transcriptional switching among members of the var gene family, causing parasites with different antigenic and phenotypic characteristics to appear at different times within a population. Here we use a genome-wide approach to explore this process in vitro within a set of cloned parasite populations. Our analyses reveal a non-random, highly structured switch pathway where an initially dominant transcript switches via a set of switch-intermediates either to a new dominant transcript, or back to the original. We show that this specific pathway can arise through an evolutionary conflict in which the pathogen has to optimise between safeguarding its limited antigenic repertoire and remaining capable of establishing infections in non-naïve individuals. Our results thus demonstrate a crucial role for structured switching during the early phases of infections and provide a unifying theory of antigenic variation in P. falciparum malaria as a balanced process of parasite-intrinsic switching and immune-mediated selection.


Asunto(s)
Variación Antigénica , Antígenos de Protozoos/genética , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Algoritmos , Perfilación de la Expresión Génica , Fenotipo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Transcripción Genética
4.
Proc Natl Acad Sci U S A ; 106(18): 7559-64, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19376968

RESUMEN

We have cultured Plasmodium falciparum directly from the blood of infected individuals to examine patterns of mature-stage gene expression in patient isolates. Analysis of the transcriptome of P. falciparum is complicated by the highly periodic nature of gene expression because small variations in the stage of parasite development between samples can lead to an apparent difference in gene expression values. To address this issue, we have developed statistical likelihood-based methods to estimate cell cycle progression and commitment to asexual or sexual development lineages in our samples based on microscopy and gene expression patterns. In cases subsequently matched for temporal development, we find that transcriptional patterns in ex vivo culture display little variation across patients with diverse clinical profiles and closely resemble transcriptional profiles that occur in vitro. These statistical methods, available to the research community, assist in the design and interpretation of P. falciparum expression profiling experiments where it is difficult to separate true differential expression from cell-cycle dependent expression. We reanalyze an existing dataset of in vivo patient expression profiles and conclude that previously observed discrete variation is consistent with the commitment of a varying proportion of the parasite population to the sexual development lineage.


Asunto(s)
Ciclo Celular , Perfilación de la Expresión Génica , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/genética , Animales , Ciclo Celular/genética , Células Cultivadas , Humanos
5.
Mol Microbiol ; 68(6): 1519-34, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18433451

RESUMEN

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, encoded by an extremely diverse gene family called var. Understanding of the genetic organization of var genes is hampered by sequence mosaicism that results from a long history of non-homologous recombination. Here we have used software designed to analyse social networks to visualize the relationships between large collections of short var sequences tags sampled from clinical parasite isolates. In this approach, two sequences are connected if they share one or more highly polymorphic sequence blocks. The results show that the majority of analysed sequences including several var-like sequences from the chimpanzee parasite Plasmodium reichenowi can be either directly or indirectly linked together in a single unbroken network. However, the network is highly structured and contains putative subgroups of recombining sequences. The major subgroup contains the previously described group A var genes, previously proposed to be genetically distinct. Another subgroup contains sequences found to be associated with rosetting, a parasite virulence phenotype. The mosaic structure of the sequences and their division into subgroups may reflect the conflicting problems of maximizing antigenic diversity and minimizing epitope sharing between variants while maintaining their host cell binding functions.


Asunto(s)
Variación Antigénica , Antígenos de Protozoos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Polimorfismo Genético , Proteínas Protozoarias/genética , Recombinación Genética , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/química , Niño , Secuencia Conservada , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/química , Plasmodium falciparum/clasificación , Proteínas Protozoarias/química , Alineación de Secuencia
6.
BMC Genomics ; 8: 45, 2007 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-17286864

RESUMEN

BACKGROUND: Var genes encode a family of virulence factors known as PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) which are responsible for both antigenic variation and cytoadherence of infected erythrocytes. Although these molecules play a central role in malaria pathogenesis, the mechanisms generating variant antigen diversification are poorly understood. To investigate var gene evolution, we compared the variant antigen repertoires from three geographically diverse parasite isolates: the 3D7 genome reference isolate; the recently sequenced HB3 isolate; and the IT4/25/5 (IT4) parasite isolate which retains the capacity to cytoadhere in vitro and in vivo. RESULTS: These comparisons revealed that only two var genes (var1csa and var2csa) are conserved in all three isolates and one var gene (Type 3 var) has homologs in IT4 and 3D7. While the remaining 50 plus genes in each isolate are highly divergent most can be classified into the three previously defined major groups (A, B, and C) on the basis of 5' flanking sequence and chromosome location. Repertoire-wide sequence comparisons suggest that the conserved homologs are evolving separately from other var genes and that genes in group A have diverged from other groups. CONCLUSION: These findings support the existence of a var gene recombination hierarchy that restricts recombination possibilities and has a central role in the functional and immunological adaptation of var genes.


Asunto(s)
Antígenos de Protozoos/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Animales , Mapeo Cromosómico , Evolución Molecular , Genes Protozoarios , Variación Genética , Genoma de Protozoos , Filogenia , Plasmodium falciparum/clasificación , Recombinación Genética/genética , Análisis de Secuencia de ADN
7.
Mol Biochem Parasitol ; 146(2): 192-7, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16442168

RESUMEN

Malaria in pregnancy is responsible for maternal anaemia, low-birth-weight babies and infant deaths. Plasmodium falciparum infected erythrocytes are thought to cause placental pathology by adhering to host receptors such as chondroitin sulphate A (CSA). CSA binding infected erythrocytes also bind IgM natural antibodies from normal human serum, a process that may facilitate placental adhesion or promote immune evasion. The parasite ligands that mediate placental adhesion are thought to be members of the variant erythrocyte surface antigen family P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the var genes. Two var gene sub-families, var1CSA and var2CSA, have been identified as parasite CSA binding ligands and are leading candidates for a vaccine to prevent pregnancy-associated malaria. We investigated whether these two var gene subfamilies implicated in CSA binding are also the molecules responsible for IgM natural antibody binding. By heterologous expression of domains in COS-7 cells, we found that both var1CSA and var2CSA PfEMP1 variants bound IgM, and in both cases the binding region was a DBL epsilon domain occurring proximal to the membrane. None of the domains from a control non-IgM-binding parasite (R29) bound IgM when expressed in COS-7 cells. These results show that PfEMP1 is a parasite ligand for non-immune IgM and are the first demonstration of a specific adhesive function for PfEMP1 epsilon type domains.


Asunto(s)
Inmunoglobulina M/inmunología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Sulfatos de Condroitina/metabolismo , Inmunoglobulina M/metabolismo , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Alineación de Secuencia
8.
BMC Struct Biol ; 6: 20, 2006 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-17020617

RESUMEN

BACKGROUND: Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase. RESULTS: The cytosolic iron superoxide dismutase from P. falciparum (PfFeSOD) has been overexpressed in E. coli in a catalytically active form. Its crystal structure has been solved by molecular replacement and refined against data extending to 2.5 A resolution. The structure reveals a two-domain organisation and an iron centre in which the metal is coordinated by three histidines, an aspartate and a solvent molecule. Consistent with ultracentrifugation analysis the enzyme is a dimer in which a hydrogen bonding lattice links the two active centres. CONCLUSION: The tertiary structure of PfFeSOD is very similar to those of a number of other iron-and manganese-dependent superoxide dismutases, moreover the active site residues are conserved suggesting a common mechanism of action. Comparison of the dimer interfaces of PfFeSOD with the human manganese-dependent superoxide dismutase reveals a number of differences, which may underpin the design of parasite-selective superoxide dismutase inhibitors.


Asunto(s)
Plasmodium falciparum/enzimología , Superóxido Dismutasa/química , Secuencia de Aminoácidos , Animales , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Dimerización , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Homología de Secuencia de Aminoácido , Superóxido Dismutasa/genética
9.
Mol Biochem Parasitol ; 134(2): 193-9, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15003839

RESUMEN

The Plasmodium falciparum R29 clone preferentially transcribes the R29var gene variant on rosette selection, unlike other isogenic clones from the same parasite lineage. Characterisation of the R29var gene locus revealed that this gene lies internal to, and is in a tail-to-tail orientation with, a second var gene variant (A4var) at one end of chromosome 13. In the R29 clone, a spontaneous deletion event between these two var variants deletes all of the A4var gene and the subtelomeric repetitive sequence arrays. We have previously shown that a simple disruption of the A4var gene is not sufficient to preferentially activate the R29var gene in rosette-selected parasites. We therefore hypothesised that the truncation of the chromosome end may be a key factor in predisposing the R29var variant to transcription under rosette selection conditions. Here, we have generated a panel of isogenic parasite clones with both intact and truncated A4var-R29var loci, and show that R29var transcription is only detected in rosette-selected clones with a truncated locus. Furthermore, we present provisional data describing the relative frequency with which this spontaneous deletion event occurs. These data have implications in our understanding of how spontaneous deletion events within subtelomeric var loci may affect transcription of these var gene variants.


Asunto(s)
Genes Protozoarios , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Transcripción Genética , Animales , Variación Antigénica/genética , Antígenos de Protozoos/genética , Northern Blotting , ADN Protozoario/análisis , ADN Protozoario/genética , Regulación de la Expresión Génica , Orden Génico , ARN Protozoario/análisis , ARN Protozoario/genética , Secuencias Repetitivas de Ácidos Nucleicos , Mapeo Restrictivo , Eliminación de Secuencia , Telómero/genética
10.
Elife ; 2: e01074, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24062941

RESUMEN

Antigenic variation in the human malaria parasite Plasmodium falciparum involves sequential and mutually exclusive expression of members of the var multi-gene family and appears to follow a non-random pattern. In this study, using a detailed in vitro gene transcription analysis of the culture-adapted HB3 strain of P. falciparum, we show that antigenic switching is governed by a global activation hierarchy favouring short and highly diverse genes in central chromosomal location. Longer and more conserved genes, which have previously been associated with severe infection in immunologically naive hosts, are rarely activated, however, implying an in vivo fitness advantage possibly through adhesion-dependent survival rates. We further show that a gene's activation rate is positively associated sequence diversity, which could offer important new insights into the evolution and maintenance of antigenic diversity in P. falciparum malaria. DOI:http://dx.doi.org/10.7554/eLife.01074.001.


Asunto(s)
Variación Antigénica , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Animales , Mapeo Cromosómico , Humanos , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Regiones Promotoras Genéticas , Transcripción Genética
13.
J Biol Chem ; 283(9): 5692-8, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18165241

RESUMEN

Non-coding RNAs (ncRNAs) play an important role in a variety of nuclear processes, including genetic imprinting, RNA interference-mediated transcriptional repression, and dosage compensation. These transcripts are thought to influence chromosome organization and, in some cases, gene expression by directing the assembly of specific chromatin modifications to targeted regions of the genome. In the malaria parasite Plasmodium falciparum, little is known about the regulation of nuclear organization or gene expression, although a notable scarcity of identifiable transcription factors encoded in its genome has led to speculation that this organism may be unusually reliant on chromatin modifications as a mechanism for regulating gene expression. To study the mechanisms that regulate chromatin structure in malaria parasites, we examined the role of ncRNAs in the assembly of chromatin at the centromeres of P. falciparum. We show that centromeric regions within the Plasmodium genome contain bidirectional promoter activity driving the expression of short ncRNAs that are localized within the nucleus and appear to associate with the centromeres themselves, strongly suggesting that they are central characters in the maintenance and function of centromeric chromatin. These observations support the hypothesis that ncRNAs play an important role in the proper organizational assembly of chromatin in P. falciparum, perhaps compensating for a lack of both regulatory transcription factors and RNA interference machinery.


Asunto(s)
Centrómero/metabolismo , Cromatina/metabolismo , Genoma de Protozoos/fisiología , Plasmodium falciparum/metabolismo , ARN Protozoario/biosíntesis , ARN no Traducido/biosíntesis , Transcripción Genética/fisiología , Animales , Núcleo Celular/metabolismo , Impresión Genómica/fisiología , Humanos , Plasmodium falciparum/citología , Regiones Promotoras Genéticas/fisiología , Interferencia de ARN/fisiología
14.
Genome Res ; 18(2): 281-92, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18096748

RESUMEN

We undertook a genome-wide search for novel noncoding RNAs (ncRNA) in the malaria parasite Plasmodium falciparum. We used the RNAz program to predict structures in the noncoding regions of the P. falciparum 3D7 genome that were conserved with at least one of seven other Plasmodium spp. genome sequences. By using Northern blot analysis for 76 high-scoring predictions and microarray analysis for the majority of candidates, we have verified the expression of 33 novel ncRNA transcripts including four members of a ncRNA family in the asexual blood stage. These transcripts represent novel structured ncRNAs in P. falciparum and are not represented in any RNA databases. We provide supporting evidence for purifying selection acting on the experimentally verified ncRNAs by comparing the nucleotide substitutions in the predicted ncRNA candidate structures in P. falciparum with the closely related chimp malaria parasite P. reichenowi. The high confirmation rate within a single parasite life cycle stage suggests that many more of the predictions may be expressed in other stages of the organism's life cycle.


Asunto(s)
Evolución Molecular , Genoma de Protozoos/genética , Plasmodium falciparum/genética , ARN no Traducido/genética , Animales , Emparejamiento Base , Secuencia de Bases , Northern Blotting , Mapeo Cromosómico , Biología Computacional , Secuencia Conservada/genética , Análisis por Micromatrices , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , ARN no Traducido/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
15.
Mol Microbiol ; 63(4): 1237-47, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17257309

RESUMEN

The Plasmodium falciparum var gene family codes for a major virulence factor in this most lethal of human malaria parasites. A single var protein variant type is expressed on each infected red blood cell, with antigenic variation allowing progeny parasites to escape host immune detection. The control of mutually exclusive var gene expression in the parasite relies on in situ epigenetic changes. Whether control of expression occurs at transcription initiation or post transcription, however, remains to be established. Recent evidence supports existence of a unique var transcription site at the nuclear periphery containing the dominantly expressed var gene, although silent var genes can colocalize to the same region. We demonstrate here that exclusive var gene expression is controlled at the level of transcription initiation during ring stages and that var genes are transcribed by RNA polymerase II. This represents another example where P. falciparum differs from the paradigm for antigenic variation, Trypanosoma brucei.


Asunto(s)
Plasmodium falciparum/genética , Proteínas Protozoarias/genética , ARN Polimerasa II/metabolismo , Amanitinas/farmacología , Animales , Regulación de la Expresión Génica , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , ARN Polimerasa II/efectos de los fármacos , Transcripción Genética
16.
J Infect Dis ; 195(6): 905-12, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17299722

RESUMEN

BACKGROUND: Macrophage-migration inhibitory factor (MIF), one of the first cytokines described, has a broad range of proinflammatory properties. The genome sequencing project of Plasmodium falciparum identified a parasite homologue of MIF. The protein is expressed during the asexual blood stages of the parasite life cycle that cause malarial disease. The identification of a parasite homologue of MIF raised the question of whether it affects monocyte function in a manner similar to its human counterpart. METHODS: Recombinant P. falciparum MIF (PfMIF) was generated and used in vitro to assess its influence on monocyte function. Antibodies generated against PfMIF were used to determine the expression profile and localization of the protein in blood-stage parasites. Antibody responses to PfMIF were determined in Kenyan children with acute malaria and in control subjects. RESULTS: PfMIF protein was expressed in asexual blood-stage parasites, localized to the Maurer's cleft. In vitro treatment of monocytes with PfMIF inhibited random migration and reduced the surface expression of Toll-like receptor (TLR) 2, TLR4, and CD86. CONCLUSIONS: These results indicate that PfMIF is released during blood-stage malaria and potentially modulates the function of monocytes during acute P. falciparum infection.


Asunto(s)
Oxidorreductasas Intramoleculares/química , Factores Inhibidores de la Migración de Macrófagos/química , Plasmodium falciparum/fisiología , Proteínas Protozoarias/química , Animales , Formación de Anticuerpos , Northern Blotting , Clonación Molecular , Cartilla de ADN , Ensayo de Inmunoadsorción Enzimática , Eritrocitos/parasitología , Humanos , Inflamación , Oxidorreductasas Intramoleculares/inmunología , Oxidorreductasas Intramoleculares/aislamiento & purificación , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/inmunología , Factores Inhibidores de la Migración de Macrófagos/aislamiento & purificación , Malaria Falciparum/epidemiología , Malaria Falciparum/fisiopatología , Monocitos/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/aislamiento & purificación
17.
Cell Microbiol ; 9(6): 1466-80, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17253978

RESUMEN

The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.


Asunto(s)
Plasmodium/química , Plasmodium/crecimiento & desarrollo , Proteínas Protozoarias/química , Proteínas Protozoarias/fisiología , Secuencia de Aminoácidos , Animales , Humanos , Estadios del Ciclo de Vida , Ratones , Datos de Secuencia Molecular , Plasmodium/genética , Plasmodium/fisiología , Plasmodium berghei/química , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/fisiología , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/fisiología , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Alineación de Secuencia , Homología Estructural de Proteína
18.
PLoS Pathog ; 1(3): e26, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16304608

RESUMEN

The variant surface antigens expressed on Plasmodium falciparum-infected erythrocytes are potentially important targets of immunity to malaria and are encoded, at least in part, by a family of var genes, about 60 of which are present within every parasite genome. Here we use semi-conserved regions within short var gene sequence "tags" to make direct comparisons of var gene expression in 12 clinical parasite isolates from Kenyan children. A total of 1,746 var clones were sequenced from genomic and cDNA and assigned to one of six sequence groups using specific sequence features. The results show the following. (1) The relative numbers of genomic clones falling in each of the sequence groups was similar between parasite isolates and corresponded well with the numbers of genes found in the genome of a single, fully sequenced parasite isolate. In contrast, the relative numbers of cDNA clones falling in each group varied considerably between isolates. (2) Expression of sequences belonging to a relatively conserved group was negatively associated with the repertoire of variant surface antigen antibodies carried by the infected child at the time of disease, whereas expression of sequences belonging to another group was associated with the parasite "rosetting" phenotype, a well established virulence determinant. Our results suggest that information on the state of the host-parasite relationship in vivo can be provided by measurements of the differential expression of different var groups, and need only be defined by short stretches of sequence data.


Asunto(s)
Antígenos de Superficie/genética , Eritrocitos/parasitología , Regulación de la Expresión Génica , Genes Protozoarios , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Animales , Variación Antigénica , Antígenos de Superficie/inmunología , Niño , Eritrocitos/inmunología , Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos/genética , Humanos , Malaria Falciparum/inmunología , Datos de Secuencia Molecular , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología
19.
J Infect Dis ; 185(8): 1207-11, 2002 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-11930336

RESUMEN

The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family is a highly polymorphic class of variant surface antigens encoded by var genes that play an important role in malaria pathogenesis. This report describes the unexpected finding that 1 of the var genes encoding a PfEMP1 variant that binds to the host receptor chondroitin sulfate A (CSA) and is implicated in malaria in pregnancy is well conserved among P. falciparum isolates worldwide. The N-terminal domains of this PfEMP1 variant are especially highly conserved, whereas the functional CSA binding domain is more variable. Analysis of var gene expression in placental parasites from primigravid women in Malawi did not support a role for this conserved gene in placental infection but identified a second commonly occurring var gene. These results indicate the need for reevaluation of previous assumptions of a minimal overlap between var gene repertoires from different parasite isolates.


Asunto(s)
Malaria/parasitología , Plasmodium falciparum/genética , Complicaciones Parasitarias del Embarazo/parasitología , Proteínas Protozoarias/genética , Animales , Secuencia de Bases , Sitios de Unión , Sulfatos de Condroitina/metabolismo , ADN Protozoario/análisis , Femenino , Humanos , Datos de Secuencia Molecular , Placenta/parasitología , Reacción en Cadena de la Polimerasa , Embarazo
20.
Proc Natl Acad Sci U S A ; 101(30): 11129-34, 2004 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-15256597

RESUMEN

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is expressed on the surface of infected erythrocytes where it plays a central role in both infected erythrocytes cytoadhesion and immune evasion. Switches in clonal expression of PfEMP1 result in antigenic variation that facilitates long-term chronic infection of the host. The var gene family encodes PfEMP1 variants, with transcriptional switching between different var variants providing the molecular basis for antigenic variation. Despite the importance of var transcriptional switching in the evasion of the immune response, little is known about the way in which this process is regulated. Here we report the measurement of transition on and off rates for a series of var gene variants. We find (i) that on and off rates for a given variant are dissimilar, (ii) that these rates vary dramatically among different variants, and (iii) that in isogenic clones expressing the same var gene, both on and off rates are constant and appear to be an intrinsic property of that particular gene. These data would suggest that the information that determines the probability of the activation or silencing of var genes is present in their surrounding DNA. Furthermore, some transitions appear to be disallowed depending on the recent variant antigen expression history of the parasite clone. These findings have important implications for both the underlying molecular mechanisms of antigenic variation and the processes that promote chronicity of infection in vivo.


Asunto(s)
Plasmodium falciparum/fisiología , Proteínas Protozoarias/genética , Transcripción Genética/genética , Sistema del Grupo Sanguíneo ABO , Animales , Northern Blotting , Clonación Molecular , Eritrocitos/parasitología , Variación Genética , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , ARN Protozoario/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda