RESUMEN
A study on the reactivity of rigid 1-azadienes derived from methylene γ-lactams is reported. Through the functionalization of 1-amino α,ß-unsaturated γ-lactam derivatives, easily available from a multicomponent reaction of amines, aldehydes, and pyruvates, it is possible to in situ generate rigid 1-azadienes locked by a γ-lactam core. The 4π-electron system of those rigid 1-azadienes can behave as both diene and dienophile species through a spontaneous cyclodimerization reaction or exclusively as dienes or dienophiles if they are trapped with imines or cyclopentadiene, respectively. The use of chiral rigid 1-azadienes as dienophiles in the cycloaddition reaction with cyclopentadiene leads to the formation of spiro-γ-lactams bearing four stereogenic centers in a highly stereospecific manner, reporting the first example of the use of methylene-γ-lactams in the synthesis of spirocycles.
RESUMEN
An efficient general method for the synthesis of a wide family of α-aminophosphonate analogs of aspartic acid bearing tetrasubstituted carbons is reported through an aza-Reformatsky reaction of α-iminophosphonates, generated from α-aminophosphonates, in an umpolung process. In addition, the α-aminophosphonate substrates showed in vitro cytotoxicity, inhibiting the growth of carcinoma human tumor cell lines A549 (carcinomic human alveolar basal epithelial cell) and SKOV3 (human ovarian carcinoma). In view of the possibilities in the diversity of the substituents that offer the synthetic methodology, an extensive profile structure-activity is presented, measuring IC50 values up to 0.34 µM in the A549 and 9.8 µM in SKOV3 cell lines.
Asunto(s)
Antineoplásicos , Organofosfonatos , Humanos , Ácido Aspártico/farmacología , Fósforo , Antineoplásicos/farmacología , Línea Celular TumoralRESUMEN
A study on the reactivity of 3-amino α,ß-unsaturated γ-lactam derivatives obtained from a multicomponent reaction is presented. Key features of the substrates are the presence of an endocyclic α,ß-unsaturated amide moiety and an enamine functionality. Following different synthetic protocols, the functionalization at three different positions of the lactam core is achieved. In the presence of a soft base, under thermodynamic conditions, the functionalization at C-4 takes place where the substrates behave as enamines, while the use of a strong base, under kinetic conditions, leads to the formation of C-5-functionalized γ-lactams, in the presence of ethyl glyoxalate, through a highly diastereoselective vinylogous aldol reaction. Moreover, the nucleophilic addition of organometallic species allows the functionalization at C-3, through the imine tautomer, affording γ-lactams bearing tetrasubstituted stereocenters, where the substrates act as imine electrophiles. Taking into account the advantage of the presence of a chiral stereocenter in C-5 substituted γ-lactams, further diastereoselective transformations are also explored, leading to novel bicyclic substrates holding a fused γ and δ-lactam skeleton. Remarkably, an example of a highly stereoselective formal [3+3] cycloaddition reaction of chiral γ-lactam substrates is reported for the synthesis of 1,4-dihidropyridines, where a non-covalent attractive interaction of a carbonyl group with an electron-deficient arene seems to drive the stereoselectivity of the reaction to the exclusive formation of the cis isomer. In order to unambiguously determine the substitution pattern resulting from the diverse reactions, an extensive characterization of the substrates is detailed through 2D NMR and/or X-ray experiments. Likewise, applications of the substrates as antiproliferative agents against lung and ovarian cancer cells are also described.
Asunto(s)
Antineoplásicos , Lactamas , beta-Lactamas/síntesis química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Reacción de Cicloadición , Iminas , Lactamas/síntesis química , Lactamas/química , Estereoisomerismo , beta-Lactamas/químicaRESUMEN
An Ugi three-component reaction using preformed α-phosphorated N-tosyl ketimines with different isocyanides in the presence of a carboxylic acid affords tetrasubstituted α-aminophosphonates. Due to the high steric hindrance, the expected acylated amines undergo a spontaneous elimination of the acyl group. The reaction is applicable to α-aryl ketimines bearing a number of substituents and several isocyanides. In addition, the densely substituted α-aminophosphonate substrates showed in vitro cytotoxicity, inhibiting the growth of carcinoma human tumor cell line A549 (carcinomic human alveolar basal epithelial cell).
Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Iminas/química , Nitrilos/química , Organofosfonatos/síntesis química , Organofosfonatos/farmacología , Células A549 , Aminas/química , Antineoplásicos/síntesis química , Ácidos Carboxílicos/química , Catálisis , Línea Celular Tumoral , Cianuros/química , HumanosRESUMEN
Due to their structural similarity with natural α-amino acids, α-aminophosphonic acid derivatives are known biologically active molecules. In view of the relevance of tetrasubstituted carbons in nature and medicine and the strong dependence of the biological activity of chiral molecules into their absolute configuration, the synthesis of α-aminophosphonates bearing tetrasubstituted carbons in an asymmetric fashion has grown in interest in the past few decades. In the following lines, the existing literatures for the synthesis of optically active tetrasubstituted α-aminophosphonates are summarized, comprising diastereoselective and enantioselective approaches.
Asunto(s)
Técnicas de Química Sintética , Química Farmacéutica/métodos , Ácidos Fosforosos/análisis , Ácidos Fosforosos/síntesis química , Aminoácidos/química , Carbono/química , Catálisis , Diseño de Fármacos , Iminas/química , Estructura Molecular , Nitrógeno/química , Organofosfonatos/síntesis química , Paladio/química , Fósforo/química , Rodio/química , EstereoisomerismoRESUMEN
A Brönsted acid multicomponent reaction between pyruvate derivatives, amines, and aldehydes for the preparation of phosphorus and fluorine substituted γ-lactam derivatives is presented. Depending on the substitution in the resulting 1,5-dihydro-2H-pyrrol-2-one substrates, the reaction provides enol- or enamine-derived γ-lactams. Some enantioselective examples of this reaction are also reported using chiral phosphoric acids as organocatalysts. Moreover, several synthetic applications of γ-lactam derivatives are presented including some examples of highly diastereoselective transformations.
RESUMEN
Bridged bicycloalkanes such as bicyclo[1.1.1]pentanes (BCPs) and bicyclo[3.1.1]heptanes (BCHeps) are important motifs in contemporary drug design due to their potential to act as bioisosteres of disubstituted benzene rings, often resulting in compounds with improved physicochemical and pharmacokinetic properties. Access to such motifs with proximal nitrogen atoms (i.e. α-amino/amido bicycloalkanes) is highly desirable for drug discovery applications, but their synthesis is challenging. Here we report an approach to α-amino BCPs and BCHeps through the visible-light enabled addition of α-amino radicals to the interbridgehead C-C bonds of [1.1.1] and [3.1.1]propellane respectively. The reaction proceeds under exceptionally mild conditions and displays broad substrate scope, providing access to an array of medicinally-relevant BCP and BCHep products. Experimental and computational mechanistic studies provide evidence for a radical chain pathway which depends critically on the stability of the α-amino radical, as well as effective catalyst turnover.
RESUMEN
We report efficient synthetic methodologies for the preparation of 3-amino and 3-hydroxy 3-pyrrolin-2-ones (unsaturated γ-lactams) through a multicomponent reaction of amines, aldehydes and acetylene or pyruvate derivatives. The densely substituted γ-lactam substrates show in vitro cytotoxicity, inhibiting the growth of the carcinoma human tumor cell lines RKO (human colon epithelial carcinoma), SKOV3 (human ovarian carcinoma) and A549 (carcinomic human alveolar basal epithelial cell). In view of the possibilities for the diversity of the substituents that offer a multicomponent, synthetic methodology, an extensive structure-activity profile is presented. In addition, the bioisosteric replacement of the flat ester group by a tetrahedral phosphonate or phosphine oxide moiety in γ-lactam substrates leads to increased growth inhibition activity. Cell morphology analysis and flow cytometry assays indicate that the main pathway by which our compounds induce cytotoxicity is based on the activation of the intracellular apoptotic mechanism.
RESUMEN
An efficient synthetic methodology for the preparation of 3-amino 1,5-dihydro-2H-pyrrol-2-ones through a multicomponent reaction of amines, aldehydes, and pyruvate derivatives is reported. In addition, the densely substituted lactam substrates show in vitro cytotoxicity, inhibiting the growth of carcinoma human tumor cell lines HEK293 (human embryonic kidney), MCF7 (human breast adenocarcinoma), HTB81 (human prostate carcinoma), HeLa (human epithelioid cervix carcinoma), RKO (human colon epithelial carcinoma), SKOV3 (human ovarian carcinoma), and A549 (carcinomic human alveolar basal epithelial cell). Given the possibilities in the diversity of the substituents that offer the multicomponent synthetic methodology, an extensive structure-activity profile is presented. In addition, both enantiomers of phosphonate-derived γ-lactam have been synthesized and isolated and a study of the cytotoxic activity of the racemic substrate vs. its two enantiomers is also presented. Cell morphology analysis and flow cytometry assays indicate that the main pathway by which our compounds induce cytotoxicity is based on the activation of the intracellular apoptotic mechanism.