RESUMEN
The extract of Cardiospermum halicacabum L. (C. halicacabum) obtained from flower, leaf and vine was loaded into modified phospholipid vesicles aiming at obtaining sprayable, biocompatible and effective nasal spray formulations for the treatment of nasopharyngeal diseases. Penetration enhancer-containing vesicles (PEVs) and hyalurosomes were formulated, and stabilized by adding a commercial gelatin from fish (20 mg/mL) or chondroitin sulfate from catshark cartilages (Scyliorhinus canicula, 20 mg/mL). Cryo-TEM images confirmed the formation of spherical vesicles, while photon correlation spectroscopy analysis disclosed the formation of small and negatively-charged vesicles. PEVs were the smaller vesicles (~100 nm) along with gelatin-hyalurosomes (~120 nm), while chondroitin-PEVs and chondroitin-hyalurosomes were larger (~160 nm). Dispersions prepared with chondroitin sulfate were more homogeneous, as the polydispersity index was ~0.15. The in vitro analysis of the droplet size distribution, average velocity module and spray cone angle suggested a good spray-ability and deposition of formulations in the nasal cavity, as the mean diameter of the droplets was in the range recommended by the Food and Drug Administration for nasal targets. The spray plume analysis confirmed the ability of PEVs, gelatin-PEVs, hyalurosomes and gelatin-hyalurosomes to be atomized in fine droplets homogenously distributed in a full cone plume, with an angle ranging from 25 to 30°. Moreover, vesicles were highly biocompatible and capable of protecting the epithelial cells against oxidative damage, thus preventing the inflammatory state.
Asunto(s)
Sulfatos de Condroitina , Gelatina , Liposomas , Rociadores Nasales , Fosfolípidos , Extractos Vegetales/administración & dosificación , Sapindaceae/química , Aerosoles , Antioxidantes/administración & dosificación , Antioxidantes/química , Materiales Biocompatibles/química , Fenómenos Químicos , Composición de Medicamentos , Humanos , Queratinocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Extractos Vegetales/químicaRESUMEN
Natural nasal spray formulations were prepared by using Zingiber officinalis (Z. officinalis) extract and citral synergically loaded into specifically designed phospholipid vesicles. Phospholipid vesicles were selected according to their stabilizing effect on the nasal mucosal barrier, and their effectiveness was further potentiated by the co-loading of Z. officinalis extract as antioxidant and anti-inflammatory agent, and citral as antibacterial molecule. Cryo-TEM images confirmed the formation of morphologically homogeneous and small vesicles, sized around 100 nm, negatively charged (-44 mV) and highly biocompatible (viability ≥100%) as detected by using epithelial cells. The analysis of size distribution of sprayed droplets, average velocity module and spray cone angle suggested a good aptitude of the vesicles to be nebulized and their effective deposition in the nasal cavity. Moreover, vesicles were effectively capable of inhibiting some nasal pathogenic bacteria (i.e. Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli) and to protect the epithelial cells against oxidative damage. The formulations are natural and safe, and all of them have shown promising technological and biological properties suggesting their possible application in the nasal cavity for the treatment of congestions and non-allergic rhinitis.
Asunto(s)
Antioxidantes , Fosfolípidos , Monoterpenos Acíclicos , Extractos Vegetales/farmacologíaRESUMEN
A total green nanotechnological nasal spray has been manufactured and proposed as an alternative treatment of rhinitis and rhinosinusitis. It was obtained by combining the strengthening effect of liposomes on barrier function, the hydrating and lubricating properties of sodium hyaluronan and the anti-inflammatory and antioxidant activities of the extract of Zingiber officinalis. To this purpose, the extract was loaded in special phospholipid vesicles immobilized with hyaluronic acid (hyalurosomes), which were further enriched with glycerol in the water phase. Liposomes and glycerosomes were prepared as well and used as reference. Vesicles were oligolamellar and multicompartment, as confirmed by cryogenic transmission electron microscopy (cryo-TEM) observation, small in size (~140 nm) and negatively charged (~-23 mV). Spray characteristics were evaluated by using the Spraytec® and instant images, from which the plume angle was measured. The range of the droplet size distribution and the narrow spray angle obtained suggest a good nebulization and a possible local deposition in the nasal cavity. In vitro studies performed by using human keratinocytes confirmed the high biocompatibility of vesicles and their ability to effectively counteract oxidative damage on cells induced by hydrogen peroxide. The overall collected data suggest that our vesicles are suitable as nasal spray.
RESUMEN
Oxidative damage has been linked to a number of diseases. Oleuropein (OLE), a natural occurring polyphenol from olive leaves (Olea europaea L.), is known to be a potent antioxidant compound with inherent instability and compromised bioavailability. Therefore, in this work, nanostructured lipid carriers (NLCs) were proposed for OLE encapsulation to protect and improve its antioxidant efficacy. The lipid matrix, composed of olive oil and Precirol, was optimized prior to OLE encapsulation. The characterization of the optimized oleuropein-loaded NLCs (NLC-OLE) showed a mean size of 150 nm, a zeta potential of -21 mV, an encapsulation efficiency of 99.12%, sustained release profile, and improved radical scavenging activity. The cellular in vitro assays demonstrated the biocompatibility of the NLCs, which were found to improve and maintain OLE antioxidant efficacy in the A549 and CuFi-1 lung epithelial cell lines, respectively. Overall, these findings suggest a promising potential of NLC-OLE to further design a pulmonary formulation for OLE delivery in lung epithelia.
RESUMEN
Non-viral vectors have emerged as a promising alternative to viral gene delivery systems due to their safer profile. Among non-viral vectors, recently, niosomes have shown favorable properties for gene delivery, including low toxicity, high stability, and easy production. The three main components of niosome formulations include a cationic lipid that is responsible for the electrostatic interactions with the negatively charged genetic material, a non-ionic surfactant that enhances the long-term stability of the niosome, and a helper component that can be added to improve its physicochemical properties and biological performance. This review is aimed at providing recent information about niosome-based non-viral vectors for gene delivery purposes. Specially, we will discuss the composition, preparation methods, physicochemical properties, and biological evaluation of niosomes and corresponding nioplexes that result from the addition of the genetic material onto their cationic surface. Next, we will focus on the in situ application of such niosomes to deliver the genetic material into immune-privileged tissues such as the brain cortex and the retina. Finally, as future perspectives, non-invasive administration routes and different targeting strategies will be discussed.
RESUMEN
The combination of multipotent mesenchymal stromal cells (MSCs) and different biomaterials has led to enormous advances in cell-based therapies, among which cell microencapsulation technologies are included. In the present work, we have studied the influence of different cell densities on the behavior of erythropoietin (EPO)-secreting MSCs immobilized in alginate microcapsules for their use as drug delivery systems. In vitro studies showed a more sustained and controlled EPO-secretion in groups with higher cell densities, which may be related to a more balanced renewal of the encapsulated cells, while low and intermediate densities gave rise to a continuous increase of both the number of cells and the EPO secretion levels. However, in vivo studies depicted a completely different scenario. Here the higher levels of cell proliferation led to a rapid space saturation and oxygen depletion of the capsule core, which eventually resulted in implant failure for the highest cell loads. On the contrary, lower cell densities showed a longer lasting release with a steadily increasing secretion profile. In conclusion, these results demonstrate how the final outcome of a cell-based drug delivery system may be tuned by just modifying the initial cell load, always taking into account the surrounding microenvironment.