RESUMEN
Histomonosis has become an important disease of turkeys since the ban of effective feed additives and therapeutics. Some critical risk factors for pathogen introduction into a farm have already been identified but open questions remain. Therefore, a retrospective case-control-study was used to identify the most significant risk factors for Histomonas (H.) meleagridis-introduction into a turkey farm. A total of 113 questionnaires were collected from 73 control-farms and 40 Histomonas-positive case-farms in Germany between 20 April 2021 and 31 January 2022. The data were analysed for possible risk factors by descriptive and univariate, single- and multi-factorial analysis. The presence of earthworms, snails and beetles, as vectors of H. meleagridis, as well as the proximity to other poultry-keeping farms in addition to a frequent observation of wild birds nearby the turkey farm, showed the highest risk potential for histomonosis outbreaks. Furthermore, poor biosecurity measures seem to have increased the probability for an outbreak. Insufficient climate management, straw as litter material and an inadequate litter refill frequency might have promoted a favourable humidity for vector- or pathogen survival providing important areas for improved disease control measures in the future.RESEARCH HIGHLIGHTSA retrospective case-control-study was conducted to identify impactful risk factors for a H. meleagridis introduction.The probability of a histomonosis outbreak was increased by the presence of vectors and reservoirs nearby a farm.Impactful risk factors concerning biosecurity measures, climate and litter management were identified.
Asunto(s)
Enfermedades de las Aves de Corral , Infecciones Protozoarias en Animales , Trichomonadida , Animales , Pavos , Infecciones Protozoarias en Animales/epidemiología , Estudios Retrospectivos , Enfermedades de las Aves de Corral/epidemiología , Aves de CorralRESUMEN
A new instrument named COMET for COherent Magnetic scattering Experiments in Transmission using polarized soft X-rays has been designed and built. This high-vacuum setup is placed at the intermediate focal point of the elastic branch of the SEXTANTS beamline at Synchrotron SOLEIL. The main application is in solid state physics, the instrument being optimized for studying material properties using coherent scattering of soft X-rays with an emphasis on imaging, with chemical selectivity, the magnetic domains of artificially nano-structured materials. The instrument's principal features are presented and illustrated through recently performed experiments.
RESUMEN
Seeded free electron lasers theoretically have the intensity, tunability, and resolution required for multiphoton spectroscopy of atomic and molecular species. Using the seeded free electron laser FERMI and a novel detection scheme, we have revealed the two-photon excitation spectra of dipole-forbidden doubly excited states in helium. The spectral profiles of the lowest (-1,0)(+1) (1)S(e) and (0,1)(0) (1)D(e) resonances display energy shifts in the meV range that depend on the pulse intensity. The results are explained by an effective two-level model based on calculated Rabi frequencies and decay rates.
RESUMEN
We present results of single-shot resonant magnetic scattering experiments of Co/Pt multilayer systems using 100 fs long ultraintense pulses from an extreme ultraviolet (XUV) free-electron laser. An x-ray-induced breakdown of the resonant magnetic scattering channel during the pulse duration is observed at fluences of 5 J/cm(2). Simultaneously, the speckle contrast of the high-fluence scattering pattern is significantly reduced. We performed simulations of the nonequilibrium evolution of the Co/Pt multilayer system during the XUV pulse duration. We find that the electronic state of the sample is strongly perturbed during the first few femtoseconds of exposure leading to an ultrafast quenching of the resonant magnetic scattering mechanism.
RESUMEN
The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.
Asunto(s)
Óptica y Fotónica/métodos , Electroquímica/métodos , Electrónica , Electrones , Diseño de Equipo , Rayos Láser , Fotones , Semiconductores , Factores de Tiempo , Rayos XRESUMEN
The ban of effective feed additives and therapeutics in the European Union and in other parts of the world led to a dramatic increase of histomonosis in turkeys. Despite the impact of the disease on the health and welfare of poultry, many questions remain open regarding the epidemiology of the pathogen. In this study, we retrospectively monitored a farm with recurring cases of histomonosis to identify possible routes of pathogen introduction and predisposing factors that may influence the disease development. We included 32 consecutive turkey flocks, which were fattened between 2007 and 2021 on the same farm under the same management and housing conditions. During this period, Histomonas meleagridis was detected in eight flocks of toms and four flocks of hens with a high variability in disease development. Outbreaks in toms led to significantly (P ≤ 0.05) higher mortality rates (5.3%-98.3%) than in hens (2.6%-6.1%). Most of the outbreaks (9/12) were diagnosed between June and September with a peak in August, suggesting a possible impact of higher temperatures either on the host or on the pathogen and pathogen-transmitting vectors. Further investigation is necessary to determine why hens might cope better with histomonosis than toms. Continuous flock and hygiene management is important to prevent an introduction of the causative pathogen and to control potential vectors.
Investigaciones retrospectivas de histomoniasis recurrente en una granja de pavos. La prohibición de aditivos alimentarios y productos terapéuticos efectivos en la Unión Europea y en otras partes del mundo condujo a un aumento dramático de histomoniasis en pavos. A pesar del impacto de la enfermedad en la salud y el bienestar de las aves, quedan muchas interrogantes abiertas con respecto a la epidemiología del patógeno. En este estudio, se monitoreó retrospectivamente una granja con casos recurrentes de histomoniasis para identificar posibles rutas de introducción de patógenos y factores predisponentes que puedan influir en el desarrollo de la enfermedad. Se incluyeron 32 lotes de pavos consecutivos, que fueron engordados entre 2007 y 2021 en la misma granja bajo las mismas condiciones de manejo y alojamiento. Durante este período, se detectó Histomonas meleagridis en ocho parvadas de machos y cuatro parvadas de gallinas con una alta variabilidad en el desarrollo de la enfermedad. Los brotes en machos llevaron a tasas de mortalidad significativamente más altas (P ≤ 0.05) (5.3 % - 98.3 %) que en gallinas (2.6 % - 6.1 %). La mayoría de los brotes (9/12) se diagnosticaron entre junio y septiembre con un pico en agosto, lo que sugiere un posible impacto de las temperaturas más altas sobre el huésped o en el patógeno y los vectores transmisores del patógeno. Se necesita más investigación para determinar por qué las gallinas pueden sobrellevar mejor la histomoniasis que los machos. El manejo continuo de la parvada y la higiene es importante para prevenir la introducción del patógeno causante y controlar a los vectores potenciales.
Asunto(s)
Enfermedades de las Aves de Corral , Infecciones Protozoarias en Animales , Infecciones por Protozoos , Animales , Femenino , Pavos , Estudios Retrospectivos , Pollos , Granjas , Enfermedades de las Aves de Corral/prevención & control , Infecciones por Protozoos/epidemiología , CausalidadRESUMEN
Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in "diffract-and-destroy" mode. We determined a coherence length of 17 µm in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.
RESUMEN
Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has evolved into a powerful characterization tool for polymeric materials and is increasingly being used to elucidate composition and orientation in thin films of relevance to organic electronic devices. For accurate quantitative compositional analysis, insight into the electronic structure and the ability to assess molecular orientation, reliable reference spectra with known energy resolution and calibrated energy scale are required. We report a set of such NEXAFS spectra from 23 semiconducting polymers and some related materials that are frequently used in organic device research.
Asunto(s)
Polímeros/química , Estructura Molecular , Estereoisomerismo , Espectroscopía de Absorción de Rayos XRESUMEN
Our knowledge of the structure of matter is largely based on X-ray diffraction studies of periodic structures and the successful transformation (inversion) of the diffraction patterns into real-space atomic maps. But the determination of non-periodic nanoscale structures by X-rays is much more difficult. Inversion of the measured diffuse X-ray intensity patterns suffers from the intrinsic loss of phase information, and direct imaging methods are limited in resolution by the available X-ray optics. Here we demonstrate a versatile technique for imaging nanostructures, based on the use of resonantly tuned soft X-rays for scattering contrast and the direct Fourier inversion of a holographically formed interference pattern. Our implementation places the sample behind a lithographically manufactured mask with a micrometre-sized sample aperture and a nanometre-sized hole that defines a reference beam. As an example, we have used the resonant X-ray magnetic circular dichroism effect to image the random magnetic domain structure in a Co/Pt multilayer film with a spatial resolution of 50 nm. Our technique, which is a form of Fourier transform holography, is transferable to a wide variety of specimens, appears scalable to diffraction-limited resolution, and is well suited for ultrafast single-shot imaging with coherent X-ray free-electron laser sources.
RESUMEN
The arrangement of spins at interfaces in a layered magnetic material often has an important effect on the properties of the material. One example of this is the directional coupling between the spins in an antiferromagnet and those in an adjacent ferromagnet, an effect first discovered in 1956 and referred to as exchange bias. Because of its technological importance for the development of advanced devices such as magnetic read heads and magnetic memory cells, this phenomenon has received much attention. Despite extensive studies, however, exchange bias is still poorly understood, largely due to the lack of techniques capable of providing detailed information about the arrangement of magnetic moments near interfaces. Here we present polarization-dependent X-ray magnetic dichroism spectro-microscopy that reveals the micromagnetic structure on both sides of a ferromagnetic-antiferromagnetic interface. Images of thin ferromagnetic Co films grown on antiferromagnetic LaFeO3 show a direct link between the arrangement of spins in each material. Remanent hysteresis loops, recorded for individual ferromagnetic domains, show a local exchange bias. Our results imply that the alignment of the ferromagnetic spins is determined, domain by domain, by the spin directions in the underlying antiferromagnetic layer.
RESUMEN
Laser-driven non-local electron dynamics in ultrathin magnetic samples on a sub-10 nm length scale is a key process in ultrafast magnetism. However, the experimental access has been challenging due to the nanoscopic and femtosecond nature of such transport processes. Here, we present a scattering-based experiment relying on a laser-induced electro- and magneto-optical grating in a Co/Pd ferromagnetic multilayer as a new technique to investigate non-local magnetization dynamics on nanometer length and femtosecond timescales. We induce a spatially modulated excitation pattern using tailored Al near-field masks with varying periodicities on a nanometer length scale and measure the first four diffraction orders in an x-ray scattering experiment with magnetic circular dichroism contrast at the free-electron laser facility FERMI, Trieste. The design of the periodic excitation mask leads to a strongly enhanced and characteristic transient scattering response allowing for sub-wavelength in-plane sensitivity for magnetic structures. In conjunction with scattering simulations, the experiment allows us to infer that a potential ultrafast lateral expansion of the initially excited regions of the magnetic film mediated by hot-electron transport and spin transport remains confined to below three nanometers.
RESUMEN
We used near-edge x-ray absorption fine structure (NEXAFS) spectroscopy to link the orientational bond order at three carbonaceous surfaces-rubbed polyimide, ion beam-irradiated polyimide, and ion beam-irradiated diamondlike carbon films-with the direction of liquid crystal (LC) alignment on these surfaces. We show that, in general, LC alignment can be created on any carbonaceous substrate by inducing orientational order at its surface. Our results form the scientific basis for LC alignment layers consisting of amorphous carbon films in which orientational order near the surface is induced by a directional low-energy ion beam.
RESUMEN
Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.
RESUMEN
Recent studies, based on X-ray absorption spectroscopy (XAS) and X-ray Raman scattering (XRS), have shown that the hydrogen bond network in liquid water consists mainly of water molecules with only two strong hydrogen bonds. Since this result is controversial, it is important to demonstrate the reliability of the experimental data, which is the purpose of this paper. Here we compare X-ray absorption spectra of liquid water recorded with five very different techniques sensitive to the local environment of the absorbing molecule. Overall, the spectra obtained with photon detection show a very close similarity and even the observable minor differences can be understood. The comparison demonstrates that XAS and XRS can indeed be applied reliably to study the local bonding of the water molecule and thus to reveal the hydrogen bond situation in bulk water.
Asunto(s)
Absorciometría de Fotón/métodos , Química Física/métodos , Agua/química , Absorción , Electrones , Enlace de Hidrógeno , Cinética , Modelos Estadísticos , Fotones , Dispersión de Radiación , Sensibilidad y Especificidad , Análisis Espectral , Espectrometría Raman , Rayos XRESUMEN
Recent advances in high-harmonic generation gave rise to soft X-ray pulses with higher intensity, shorter duration and higher photon energy. One of the remaining shortages of this source is its restriction to linear polarization, since the yield of generation of elliptically polarized high harmonics has been low so far. We here show how this limitation is overcome by using a cross-polarized two-colour laser field. With this simple technique, we reach high degrees of ellipticity (up to 75%) with efficiencies similar to classically generated linearly polarized harmonics. To demonstrate these features and to prove the capacity of our source for applications, we measure the X-ray magnetic circular dichroism (XMCD) effect of nickel at the M2,3 absorption edge around 67 eV. There results open up the way towards femtosecond time-resolved experiments using high harmonics exploiting the powerful element-sensitive XMCD effect and resolving the ultrafast magnetization dynamics of individual components in complex materials.
RESUMEN
The demagnetization of a hard ferromagnetic layer via the fringing fields of domain walls created by reversing the moment of a neighboring soft ferromagnetic layer is explored experimentally. An unusual oscillatory decay of the magnetic moment of the hard layer is observed using structures in which the demagnetization occurs after a few hundred cycles. This surprising observation is confirmed on a microscopic scale by detailed imaging of the magnetization of the hard layer using high resolution photoemission electron microscopy and by micromagnetic simulations.
RESUMEN
Pilot-tests were carried out on the effect of low X-ray doses (0, 2, 4, 8, 12, 16 and 32 rad) and age of females on intra-uterine death. The tests included the effects of various ages of females at exposure, of fractionated irradiation and pre-partal exposure. Females and males were taken from our inbred CBA strain. Virgin females, as well as females that had produced some litters, were used. From the results it is obvious that the age of the females at the time of mating had a considerable effect on the death rate (varying from about 8% in young females to 25-30% in old ones). The low-dose X-ray exposure does not seem to have had any detectable influence on the rate of intra-uterine death.
Asunto(s)
Muerte Fetal/etiología , Feto/efectos de la radiación , Edad Materna , Efectos de la Radiación , Animales , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Ratones , Embarazo , Rayos XRESUMEN
Understanding the loss of magnetic order and the microscopic mechanisms involved in laser induced magnetization dynamics is one of the most challenging topics in today's magnetism research. While scattering between spins, phonons, magnons and electrons have been proposed as sources for dissipation of spin angular momentum, ultrafast spin dependent transport of hot electrons has been pointed out as a potential candidate to explain ultrafast demagnetization without resorting to any spin dissipation channel. Here we use time resolved magneto-optical Kerr measurements to extract the influence of spin dependent transport on the demagnetization dynamics taking place in magnetic samples with alternating domains with opposite magnetization directions. We unambiguously show that whatever the sample magnetic configuration, the demagnetization takes place during the same time, demonstrating that hot electrons spin dependent transfer between neighboring domains does not alter the ultrafast magnetization dynamics in our systems with perpendicular anisotropy and 140 nm domain sizes.
RESUMEN
An endstation for pump-probe small-angle X-ray scattering (SAXS) experiments at the free-electron laser in Hamburg (FLASH) is presented. The endstation houses a solid-state absorber, optical incoupling for pump-probe experiments, time zero measurement, sample chamber, and detection unit. It can be used at all FLASH beamlines in the whole photon energy range offered by FLASH. The capabilities of the setup are demonstrated by showing the results of resonant magnetic SAXS measurements on cobalt-platinum multilayer samples grown on freestanding Si(3)N(4) membranes and pump-laser-induced grid structures in multilayer samples.
RESUMEN
During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic demagnetization process in each domain with spin-transport processes across the domain walls, demonstrating the importance of spin-dependent electron transport between differently magnetized regions as an ultrafast demagnetization channel. This pathway exists independent from structural inhomogeneities such as chemical interfaces, and gives rise to an ultrafast spatially varying response to optical pump pulses.