Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(36): 9014-9019, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30126999

RESUMEN

Abnormally enlarged early endosomes (EEs) are pathological features of neurodegenerative diseases, yet insight into the mechanisms and consequences of EE expansion remains elusive. Here, we report swollen apical EEs in the retinal pigment epithelium (RPE) of aged human donors and in the pigmented Abca4-/- mouse model of Stargardt early-onset macular degeneration. Using high-resolution live-cell imaging, we show that age-related and pathological accumulation of lipofuscin bisretinoids increases ceramide at the apical surface of the RPE, which promotes inward budding and homotypic fusion of EEs. These enlarged endosomes internalize the complement protein C3 into the RPE, resulting in the intracellular generation of C3a fragments. Increased C3a in turn activates the mechanistic target of rapamycin (mTOR), a regulator of critical metabolic processes such as autophagy. The antidepressant desipramine, which decreases ceramide levels by inhibiting acid sphingomyelinase, corrects EE defects in the RPE of Abca4-/- mice. This prevents C3 internalization and limits the formation of C3a fragments within the RPE. Although uncontrolled complement activation is associated with macular degenerations, how complement contributes to pathology in a progressive disease is not well understood. Our studies link expansion of the EE compartment with intracellular complement generation and aberrant mTOR activation, which could set the stage for chronic metabolic reprogramming in the RPE as a prelude to disease. The pivotal role of ceramide in driving EE biogenesis and fusion in the Abca4-/- mice RPE suggests that therapeutic targeting of ceramide could be effective in Stargardt disease and other macular degenerations.


Asunto(s)
Complemento C3a/metabolismo , Endosomas/metabolismo , Degeneración Macular/congénito , Epitelio Pigmentado de la Retina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transportadoras de Casetes de Unión a ATP/deficiencia , Anciano , Anciano de 80 o más Años , Animales , Ceramidas/genética , Ceramidas/metabolismo , Complemento C3a/genética , Modelos Animales de Enfermedad , Endosomas/genética , Endosomas/patología , Femenino , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Masculino , Ratones , Ratones Noqueados , Epitelio Pigmentado de la Retina/patología , Enfermedad de Stargardt , Porcinos , Serina-Treonina Quinasas TOR/genética
2.
Gut ; 66(6): 1001-1011, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-26933171

RESUMEN

OBJECTIVE: We tested the ability of Notch pathway receptors Notch1 and Notch2 to regulate stem and epithelial cell homoeostasis in mouse and human gastric antral tissue. DESIGN: Mice were treated with the pan-Notch inhibitor dibenzazepine (DBZ) or inhibitory antibodies targeting Notch1 and/or Notch2. Epithelial proliferation, apoptosis and cellular differentiation were measured by histological and molecular approaches. Organoids were established from mouse and human antral glands; growth and differentiation were measured after treatment with Notch inhibitors. RESULTS: Notch1 and Notch2 are the predominant Notch receptors expressed in mouse and human antral tissue and organoid cultures. Combined inhibition of Notch1 and Notch2 in adult mice led to decreased epithelial cell proliferation, including reduced proliferation of LGR5 stem cells, and increased apoptosis, similar to the response to global Notch inhibition with DBZ. Less pronounced effects were observed after inhibition of individual receptors. Notch pathway inhibition with DBZ or combined inhibition of Notch1 and Notch2 led to increased differentiation of all gastric antral lineages, with remodelling of cells to express secretory products normally associated with other regions of the GI tract, including intestine. Analysis of mouse and human organoids showed that Notch signalling through Notch1 and Notch2 is intrinsic to the epithelium and required for organoid growth. CONCLUSIONS: Notch signalling is required to maintain gastric antral stem cells. Notch1 and Notch2 are the primary Notch receptors regulating epithelial cell homoeostasis in mouse and human stomach.


Asunto(s)
Células Epiteliales/fisiología , Homeostasis , Organoides/crecimiento & desarrollo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Células Madre/fisiología , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dibenzazepinas/farmacología , Células Epiteliales/efectos de los fármacos , Femenino , Mucosa Gástrica/citología , Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Organoides/efectos de los fármacos , Antro Pilórico , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/genética , Receptor Notch2/antagonistas & inhibidores , Receptor Notch2/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Células Madre/efectos de los fármacos
3.
Curr Biol ; 33(18): 3805-3820.e7, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37586372

RESUMEN

Balancing the competing demands of phagolysosomal degradation and autophagy is a significant challenge for phagocytic tissues. Yet how this plasticity is accomplished in health and disease is poorly understood. In the retina, circadian phagocytosis and degradation of photoreceptor outer segments by the postmitotic retinal pigment epithelium (RPE) are essential for healthy vision. Disrupted autophagy due to mechanistic target of rapamycin (mTOR) overactivation in the RPE is associated with blinding macular degenerations; however, outer segment degradation is unaffected in these diseases, indicating that distinct mechanisms regulate these clearance mechanisms. Here, using advanced imaging and mouse models, we identify optineurin as a key regulator that tunes phagocytosis and lysosomal capacity to meet circadian demands and helps prioritize outer segment clearance by the RPE in macular degenerations. High-resolution live-cell imaging implicates optineurin in scissioning outer segment tips prior to engulfment, analogous to microglial trogocytosis of neuronal processes. Optineurin is essential for recruiting light chain 3 (LC3), which anchors outer segment phagosomes to microtubules and facilitates phagosome maturation and fusion with lysosomes. This dynamically activates transcription factor EB (TFEB) to induce lysosome biogenesis in an mTOR-independent, transient receptor potential-mucolipin 1 (TRPML1)-dependent manner. RNA-seq analyses show that expression of TFEB target genes temporally tracks with optineurin recruitment and that lysosomal and autophagy genes are controlled by distinct transcriptional programs in the RPE. The unconventional plasma membrane-to-nucleus signaling mediated by optineurin ensures outer segment degradation under conditions of impaired autophagy in macular degeneration models. Independent regulation of these critical clearance mechanisms would help safeguard the metabolic fitness of the RPE throughout the organismal lifespan.


Asunto(s)
Lisosomas , Degeneración Macular , Ratones , Animales , Lisosomas/metabolismo , Fagocitosis , Epitelio Pigmentado de la Retina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Degeneración Macular/metabolismo
4.
JCI Insight ; 6(9)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33822768

RESUMEN

Age-related macular degeneration (AMD) damages the retinal pigment epithelium (RPE), the tissue that safeguards photoreceptor health, leading to irreversible vision loss. Polymorphisms in cholesterol and complement genes are implicated in AMD, yet mechanisms linking risk variants to RPE injury remain unclear. We sought to determine how allelic variants in the apolipoprotein E cholesterol transporter modulate RPE homeostasis and function. Using live-cell imaging, we show that inefficient cholesterol transport by the AMD risk-associated ApoE2 increases RPE ceramide, leading to autophagic defects and complement-mediated mitochondrial damage. Mitochondrial injury drives redox state-sensitive cysteine-mediated phase separation of ApoE2, forming biomolecular condensates that could nucleate drusen. The protective ApoE4 isoform lacks these cysteines and is resistant to phase separation and condensate formation. In Abca-/- Stargardt macular degeneration mice, mitochondrial dysfunction induces liquid-liquid phase separation of p62/SQSTM1, a multifunctional protein that regulates autophagy. Drugs that decrease RPE cholesterol or ceramide prevent mitochondrial injury and phase separation in vitro and in vivo. In AMD donor RPE, mitochondrial fragmentation correlates with ApoE and p62 condensates. Our studies demonstrate that major AMD genetic and biological risk pathways converge upon RPE mitochondria, and identify mitochondrial stress-mediated protein phase separation as an important pathogenic mechanism and promising therapeutic target in AMD.


Asunto(s)
Condensados Biomoleculares/metabolismo , Ceramidas/metabolismo , Colesterol/metabolismo , Degeneración Macular/metabolismo , Mitocondrias/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proteína Sequestosoma-1/metabolismo , Animales , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Autofagia/fisiología , Condensados Biomoleculares/patología , Proteínas del Sistema Complemento/metabolismo , Microscopía Intravital , Degeneración Macular/genética , Degeneración Macular/patología , Ratones , Ratones Noqueados , Mitocondrias/patología , Estrés Oxidativo , Epitelio Pigmentado de la Retina/patología
5.
Redox Biol ; 37: 101781, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33162377

RESUMEN

The retinal pigment epithelium (RPE) is the primary site of injury in non-neovascular age-related macular degeneration or dry AMD. Polymorphisms in genes that regulate complement activation and cholesterol metabolism are strongly associated with AMD, but the biology underlying disease-associated variants is not well understood. Here, we highlight recent studies that have used molecular, biochemical, and live-cell imaging methods to elucidate mechanisms by which aging-associated insults conspire with AMD genetic risk variants to tip the balance towards disease. We discuss how critical functions including lipid metabolism, autophagy, complement regulation, and mitochondrial dynamics are compromised in the RPE, and how a deeper understanding of these mechanisms has helped identify promising therapeutic targets to preserve RPE homeostasis in AMD.


Asunto(s)
Metabolismo de los Lípidos , Degeneración Macular , Activación de Complemento/genética , Humanos , Metabolismo de los Lípidos/genética , Degeneración Macular/genética , Degeneración Macular/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda