Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Prep Biochem Biotechnol ; 54(5): 668-679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38190739

RESUMEN

For complete utilization of high glucose at ∼100 g/L, a high cell density (HCD) continuous fermentation system was established using Lb. delbrueckii NCIM 2025 for the bioproduction of lactic acid (LA). An integrated membrane cell recycling system coupled with the continuous bioreactor, aided to achieve the highest 34.77 g/L h LA productivity and 0.94-0.98 g/g yield. ∼34 times higher productivity was observed (in comparison to batch fermentation conducted in this study), when the continuous operations were carried out at the maximum dilution rate and wet cell weight i.e. 0.36 h-1 and 230 g/L, respectively. These results show the potential of this method for large-scale lactic acid production because it not only produces high titers but also ensures that glucose is used effectively. The method's superior performance in comparison to earlier studies suggests it as an affordable and sustainable alternative for the production of LA.


Asunto(s)
Reactores Biológicos , Fermentación , Glucosa , Ácido Láctico , Lactobacillus delbrueckii , Ácido Láctico/metabolismo , Ácido Láctico/biosíntesis , Glucosa/metabolismo , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/crecimiento & desarrollo
2.
Prep Biochem Biotechnol ; 53(9): 1043-1057, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36655700

RESUMEN

Commercial production of lactic acid (LA) utilizes mostly glucose or lactose coupled with yeast extract (YE) as a supplement. With sugars, nitrogen, and vitamin supplementation being most of the LA production costs, the use of inexpensive molasses, a by-product of the sugar industry, can provide considerable cost savings. There are just a few publications on the production of LA from molasses; consequently, the present investigation was conducted using molasses supplemented with yeast extract. The research was done in a continuous-flow, high-cell-density (HCD) bioreactor with an external membrane microfiltration device for cell recycling. The system, run at 1 L with Lactobacillus delbrueckii NCIM 2025, produced a LA yield of 0.95-0.98 g/g from ∼100 g sugars/L when supplemented with 1 g/L YE. Dilution rates in the range of 0.04-0.36 h-1 resulted in volumetric lactic acid productivities in the range of 4.3-27.6 g/L h, which compares favorably with the highest values recorded in literature, for glucose in the presence of YE, which was as high as 30 g/L. The utilization of cane molasses has a significant impact on the economics of lactic acid production, as measured by a comparison of costs with commercial glucose.


Asunto(s)
Bastones , Melaza , Fermentación , Medios de Cultivo , Ácido Láctico/metabolismo , Glucosa
3.
Prep Biochem Biotechnol ; 52(8): 924-936, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34895061

RESUMEN

Renewable natural gas (RNG) produced from anaerobic digestion (AD) of agricultural residues is emerging a serious biofuel alternative. Complex nature of lignocellulosic biomass residues coupled with complex biochemical transformations involving a large spectrum of microbial communities make anaerobic digestion of biomass difficult to understand and control. The present work aims at studying adaptation of microbial consortia in AD to substrates changes and correlating these to biogas generation. The double edged study deals with (a) using a common starting culture inoculum on different fractions of pretreated lignocellulosic biomass (LBM) fractions; and (b) using different starter inocula for gas generation from simple glucose substrate. Taxonomic analysis using 16S amplicon sequencing is shown to highlight changes in microbial community structure and predominance, majorly in hydrolytic bacterial populations. Observed variations in the rate of digestion with different starter inocula could be related to differences in microbial community structure and relative abundance. Results with different treated biomass fractions as substrates indicated that AD performance could be related to abundance of substrate-specific microbial communities. The work is a step to a deeper understanding of AD processes that may lead to better control and operation of AD for super-scale production of RNG from biomass feedstocks.


Asunto(s)
Biocombustibles , Consorcios Microbianos , Anaerobiosis , Biomasa , Hidrólisis
4.
Prep Biochem Biotechnol ; 51(10): 1046-1055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33719922

RESUMEN

2,3-Butanediol (2,3-BDO) has varied applications in chemical, pharmaceutical, & food industry. Microorganisms belonging to Klebsiella, Enterobacter & Serratia genera are well-known producers of 2,3-BDO. However, they have limited usage in industrial-scale owing to their pathogenic nature. A nonpathogenic soil isolate identified as Bacillus licheniformis (BL1) was thus investigated for 2,3-BDO production. Soy flakes, soy flour, defatted soy, and soybean meal-based hydrolysates replaced yeast extract and peptone as nitrogen sources. Defatted soy flakes and soybean meal hydrolysate led to an equivalent 2,3-BDO yield and productivity as compared to that of Yeast Extract and peptone. The pH and oxygen variation influenced the proportion of various products of the mixed acid-butanediol pathway. Further, the batch mode fermentation with soy hydrolysate and optimized process parameter resulted in 2,3-BDO titer, yield and productivity of 11.06 g/L, 0.43 g/g and 0.48 g/L h respectively. Glucose concentration above 5% was inhibitory and led to reduction in the specific growth rate of BL1 in batch cultivation. Intermittent glucose feeding in fed-batch mode overcame this substrate limitation resulting in increased titers (49.8 g/L) and productivity (0.62 g/L h). Modified medium containing soy hydrolysate as nitrogen source with fermentation process optimization resulted in 67% decrease in medium cost for 2,3-BDO production.


Asunto(s)
Bacillus licheniformis/metabolismo , Butileno Glicoles/metabolismo , Medios de Cultivo/metabolismo , Fermentación , Glucosa/metabolismo , Microbiología Industrial/métodos , Nitrógeno/metabolismo , Glycine max/metabolismo
5.
Photosynth Res ; 139(1-3): 553-567, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29860703

RESUMEN

This study is the first to explore the influence of incident light intensity on the photosynthetic responses under mixotrophic growth of microalga Asteracys sp. When grown mixotrophically, there was an enhanced regulation of non-photochemical quenching (NPQ) of the excited state of chlorophyll (Chl) a within the cells in response to white cool fluorescent high light (HL; 600 µmol photons m-2 s-1). Simultaneous measurement of reactive oxygen species (ROS) production as malondialdehyde (MDA) and ascorbate peroxidase (APX), an ROS scavenger, showed improved management of stress within mixotrophic cells under HL. Despite the observed decrease in quantum yield of photosynthesis measured through the Chl a fluorescence transient, no reduction in biomass accumulation was observed under HL for mixotrophy. However, biomass loss owing to photoinhibition was observed in cells grown phototrophically under the same irradiance. The measurements of dark recovery of NPQ suggested that "state transitions" may be partly responsible for regulating overall photosynthesis in Asteracys sp. The partitioning of photochemical and non-photochemical processes to sustain HL stress was analysed. Collectively, this study proposes that mixotrophy using glucose leads to a change in the photosynthetic abilities of Asteracys sp. while enhancing the adaptability of the alga to high irradiances.


Asunto(s)
Luz , Microalgas/metabolismo , Ascorbato Peroxidasas/metabolismo , Clorofila/metabolismo , Malondialdehído/metabolismo , Microalgas/efectos de la radiación , Fotosíntesis/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo
6.
Photosynth Res ; 139(1-3): 539-551, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29987549

RESUMEN

Ulva lactuca is regarded as a prospective energy crop for biorefinery owing to its affluent biochemical composition and high growth rate. In fast-growing macroalgae, biomass development strictly depends on external nitrogen pools. Additionally, nitrogen uptake rates and photosynthetic pigment content vary with type of nitrogen source and light conditions. However, the combined influence of nitrogen source and light intensity on photosynthesis is not widely studied. In present study, pale green phenotype of U. lactuca was obtained under high light (HL) condition when inorganic nitrogen (nitrate) in the media was substituted with organic nitrogen (urea). Further, pale green phenotype survived the saturating light intensities in contrast to the normal pigmented control which bleached in HL. Detailed analysis of biochemical composition and photosynthesis was performed to understand functional antenna size and photoprotection in pale green phenotype. Under HL, urea-grown cultures exhibited increased growth rate, carbohydrate and lipid content while substantial reduction in protein, chlorophyll content and PSII antenna size was observed. Further, in vivo slow and polyphasic chlorophyll a (Chl a) fluorescence studies revealed reduction in excitation pressure on PSII along with low non-photochemical quenching thus, transmitting most of the absorbed energy into photochemistry. The results obtained could be correlated to previous report on cultivation of U. lactuca through saturating summer intensities (1000 µmole photons m-2 s-1) in urea based: poultry litter extract (PLE). Having proved critical role of urea in conforming photoprotection, the application PLE was authenticated for futuristic, sustainable and year-round biomass cultivation.


Asunto(s)
Fotoquímica/métodos , Algas Marinas/metabolismo , Clorofila/metabolismo , Fotosíntesis/fisiología
7.
Biotechnol Lett ; 41(6-7): 823-836, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31093837

RESUMEN

OBJECTIVE: Metabolic engineering efforts are guided by identifying gene targets for overexpression and/or deletion. Isobutanol, a biofuel candidate, is biosynthesized using the valine biosynthesis pathway and enzymes of the Ehrlich pathway. Most reported studies for isobutanol production in Escherichia coli employ multicopy plasmids, an approach that suffers from disadvantages such as plasmid instability, increased metabolic burden, and use of antibiotics to maintain selection pressure. Cofactor imbalance is another issue that may limit production of isobutanol, as two enzymes of the pathway utilize NADPH as a cofactor. RESULTS: To address these issues, we constructed E. coli strains with chromosomally-integrated, codon-optimized isobutanol pathway genes (ilvGM, ilvC, kivd, adh) selected on the basis of their cofactor preferences. Genes involved in diverting pyruvate flux toward fermentation byproducts were deleted. Metabolite analyses of the constructed strains revealed extracellular accumulation of significant amounts of isobutyraldehyde, a pathway intermediate, and the overflow metabolites 2,3-butanediol and acetol. CONCLUSIONS: These results demonstrate that the genetic modifications carried out led to activation of alternative pathways that diverted carbon flux toward formation of unwanted metabolites. The present study highlights how precursor metabolites can be metabolized through enzymatic routes that have not been considered important in previous studies due to the different strategies employed therein. The insights gained from the present study will allow rational genetic modification of host cells for production of metabolites of interest.


Asunto(s)
Butanoles/metabolismo , Ciclo del Carbono , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética
8.
Prep Biochem Biotechnol ; 49(5): 444-452, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30861359

RESUMEN

Enzymatic interesterification was carried out between high-oleic canola oil and fully hydrogenated soybean oil using indigenously immobilized Thermomyces lanuginosus lipas substrate concentration, moisture content of enzyme, and enzyme load. Interesterification resulted in a decrease in the concentration of tri-unsaturated and trisaturated TAG and an increase of mono- and di-saturated TAG as observed by reversed-phase HPLC. The alteration in TAG composition and the presence of new TAG species after interesterification was correlated with extended plasticity characterized by lower slip melting point with a significant change in functionality and consistency of the interesterified product. Thermal and structural properties of the blends before and after interesterification were assessed by differential scanning calorimetry (DSC), X-ray diffraction and polarized light microscopy. Trans-fat analysis indicated the absence of any trans fatty acid in the final interesterified product. The resultant interesterified products with varying slip melting points can be used in the formulation of healthier fat and oil products and address a critical industrial demand for trans free formulations for base-stocks of spreads, margarines, and confectionary fats.


Asunto(s)
Enzimas Inmovilizadas/química , Lipasa/química , Triglicéridos/química , Brassica rapa/química , Esterificación , Eurotiales/enzimología , Tecnología Química Verde/métodos , Aceite de Brassica napus/química , Aceite de Soja/química , Glycine max/química , Estereoisomerismo , Ácidos Grasos trans/análisis , Triglicéridos/análisis , Agua/química
9.
Prep Biochem Biotechnol ; 48(1): 6-12, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-28976230

RESUMEN

Propionic acid production from glucose was studied using Propionibacterium freudenreichii shermanii. Conditions were optimized for high yields of propionic acid and total organic acids by sequential optimization of parameters like pH, inoculum age, inoculum volume and substrate concentration. Near-theoretical yield (0.54 ± 0.023 g/g) was achieved for propionic acid with fermentation of 1% glucose using 20% (v/v) of 48 hr old P. shermanii at 30°C, pH maintained at 5.5. Total organic acid yield under these conditions was 0.74 ± 0.06 g/g. The study resulted in achieving 98% and 95% theoretical yields of propionic acid and total organic acids, respectively. Under optimized conditions, along with organic acids, P. shermanii also produced vitamin B12 and trehalose intracellularly, showing its potential to be used as a cell factory.


Asunto(s)
Glucosa/metabolismo , Microbiología Industrial/métodos , Propionatos/metabolismo , Propionibacterium freudenreichii/crecimiento & desarrollo , Técnicas de Cultivo Celular por Lotes/métodos , Fermentación , Propionibacterium freudenreichii/metabolismo , Trehalosa/metabolismo , Vitamina B 12/metabolismo
10.
Extremophiles ; 21(4): 687-697, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28444450

RESUMEN

Caldicellulosiruptor bescii, the most thermophilic cellulolytic bacterium, is rich in hydrolytic and accessory enzymes that can degrade untreated biomass, but the precise role of many these enzymes is unknown. One of such enzymes is a predicted GDSL lipase or esterase encoded by the locus Athe_0553. In this study, this probable esterase named as Cbes-AcXE2 was overexpressed in Escherichia coli. The Ni-NTA affinity purified enzyme exhibited an optimum pH of 7.5 at an optimum temperature of 70 °C. Cbes-AcXE2 hydrolyzed p-nitrophenyl (pNP) acetate, pNP-butyrate, and phenyl acetate with approximately equal efficiency. The specific activity and K M for the most preferred substrate, phenyl acetate, were 142 U/mg and 0.85 mM, respectively. Cbes-AcXE2 removed the acetyl group of xylobiose hexaacetate and glucose pentaacetate like an acetyl xylan esterase (AcXE). Bioinformatics analyses suggested that Cbes-AcXE2, which carries an SGNH hydrolase-type esterase domain, is a member of an unclassified carbohydrate esterase (CE) family. Moreover, Cbes-AcXE2 is evolutionarily and biochemically similar to an unclassified AcXE, Axe2, of Geobacillus stearothermophilus. Thus, we proposed a novel family of carbohydrate esterase for both Cbes-AcXE2 and Axe2.


Asunto(s)
Acetilesterasa/metabolismo , Hidrolasas/metabolismo , Thermoanaerobacterium/enzimología , Acetilesterasa/química , Secuencia de Aminoácidos , Catálisis , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Hidrolasas/química , Cinética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
11.
J Ind Microbiol Biotechnol ; 44(9): 1273-1277, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28547323

RESUMEN

The platform chemical 2,3-butanediol (2,3-BDO) is produced by a number of microorganisms via a three-enzyme pathway starting from pyruvate. Here, we report production of 2,3-BDO via a shortened, two-enzyme pathway in Escherichia coli. A synthetic operon consisting of the acetolactate synthase (ALS) and acetoin reductase (AR) genes from Enterobacter under control of the T7 promoter was cloned in an episomal plasmid. E. coli transformed with this plasmid produced 2,3-BDO and the pathway intermediate acetoin, demonstrating that the shortened pathway was functional. To assemble a synthetic operon for inducer- and plasmid-free production of 2,3-BDO, ALS and AR genes were integrated in the E. coli genome under control of the constitutive ackA promoter. Shake flask-level cultivation led to accumulation of ~1 g/L acetoin and ~0.66 g/L 2,3-BDO in the medium. The novel biosynthetic route for 2,3-BDO biosynthesis described herein provides a simple and cost-effective approach for production of this important chemical.


Asunto(s)
Reactores Biológicos , Butileno Glicoles/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Ingeniería Genética , Acetoína/metabolismo , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Enterobacter/enzimología , Enterobacter/genética , Escherichia coli/genética , Operón/genética , Plásmidos/genética
12.
Prep Biochem Biotechnol ; 47(10): 1050-1058, 2017 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-28976245

RESUMEN

Enzymatic synthesis of glyceryl monoundecylenate (GMU) was performed using indigenously immobilized Candida anatarctica lipase B preparation (named as PyCal) using glycerol and undecylenic acid as substrates. The effect of molar ratio, enzyme load, reaction time, and organic solvent on the reaction conversion was determined. Both batch and continuous processes for GMU synthesis with shortened reaction time were developed. Under optimized batch reaction conditions such as 1:5 molar ratio of undecylenic acid and glycerol, 2 h of reaction time at 30% substrate concentration in tert-butyl alcohol, conversion of 82% in the absence of molecular sieve, and conversion of 93% in the presence of molecular sieve were achieved. Packed bed reactor studies resulted in high conversion of 86% in 10-min residence time. Characterization of formed GMU was performed by FTIR, MS/MS. Enzymatic process resulted in GMU as a predominant product in high yield and shorter reaction time periods with GMU content of 92% and DAG content of 8%. Optimized GMU synthesis in the present study can be used as a useful reference for industrial synthesis of fatty acid esters of glycerol by the enzymatic route.


Asunto(s)
Candida/enzimología , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Monoglicéridos/metabolismo , Reactores Biológicos , Candida/metabolismo , Emulsiones , Esterificación , Glicerol/metabolismo , Microbiología Industrial , Temperatura , Ácidos Undecilénicos/metabolismo
13.
Protein Expr Purif ; 122: 31-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26899525

RESUMEN

The genome of Methylococcus capsulatus (bath) encodes a protein R-est6 that is annotated as a lipase family 3 protein. The phylogenetic and the sequence analyses linked this protein to the family 6 carboxylesterase. The gene encoding R-est6 was cloned and overexpressed in Escherichia coli and the recombinant 6x-His tagged protein was purified by Ni-NTA affinity chromatography. The buffers used in the purification were modified by adding 1% glycerol instead of the salt to prevent the protein aggregation. Far UV-CD spectrum and gel filtration chromatography of the purified R-est6 confirmed that the protein was well folded like a typical α/ß hydrolase and had the quaternary structure of a tetramer, in addition to a compact monomer. The optimum pH was in the range of 7.0-9.0 and the optimum temperature was at 55 °C for the hydrolysis of pNP-butyrate. As expected, being a member of the family 6 carboxylesterase, R-est6 hydrolyzed triglycerides, pNP esters of the small and the medium fatty acid chain esters and an aryl ester-phenyl acetate. However, R-est6 was also found to hydrolyze the long-chain fatty acid ester which had never been reported for the family 6 carboxylesterase. Additionally, R-est6 was stable and active in the different water-miscible organic solvents. Therefore, the broad substrate range and the structural stability of R-est6 would be advantageous for its application in industrial processes.


Asunto(s)
Carboxilesterasa/genética , Methylococcus capsulatus/enzimología , Methylococcus capsulatus/genética , Secuencia de Aminoácidos , Carboxilesterasa/química , Carboxilesterasa/metabolismo , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Methylococcus capsulatus/química , Methylococcus capsulatus/metabolismo , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
14.
Prep Biochem Biotechnol ; 46(8): 803-809, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26829380

RESUMEN

Parachlorella kessleri is a promising oil-bearing marine alga which shows decreased growth under high light stress. Osmolytes are known to relieve stress by protecting the cell membrane, proteins, and enzymes. Enhanced production of osmolyte (trehalose) was thus used to relieve stress in P. kessleri by overexpression of trehalose phosphate synthase (TPS) gene. Transformed P. kessleri was grown under different light regimes to study the effect of trehalose overproduction on growth. Study of one of the TPS transformants showed increased trehalose as well as increased biomass and decreased pigments, reactive oxygen species, and lipid peroxidation of cell membrane. The improved photosynthetic performance of the transformant was also signified by pulse-amplitude-modulated fluorometric analysis. All of these factors reveal improved stress tolerance under high light conditions by increased trehalose accumulation due to TPS overexpression in P. kessleri.


Asunto(s)
Chlorophyta/genética , Chlorophyta/fisiología , Glucosiltransferasas/genética , Fotosíntesis , Biocombustibles , Biomasa , Chlorophyta/crecimiento & desarrollo , Técnicas de Transferencia de Gen , Glucosiltransferasas/metabolismo , Luz , Peroxidación de Lípido , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Trehalosa/metabolismo , Regulación hacia Arriba
15.
Prep Biochem Biotechnol ; 46(8): 810-814, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26828117

RESUMEN

Sedoheptulose 1,7-bisphosphatase (SBPase), a nuclear-encoded chloroplastic enzyme, is an important rate-limiting enzyme of the carbon fixation cycle (Calvin cycle). SBPase is unique to only photosynthetic organisms and is involved in the regeneration of ribulose-1,5-bisphosphate. SBPases from several sources have been studied for their induction and regulation. However, SBPase from Chlamydomonas reinhardtii CC-503, the widely studied model microalga, has not been isolated and functionally confirmed to date. In this study, the full-length cDNA for SBPase was isolated from C. reinhardtii CC-503 using anchored oligo(dT)24VGN primer for reverse transcription. The SBPase cDNA was cloned into pET28a expression vector for the production of 6X His-tagged protein in Escherichia coli BL21 (DE3) strain. Although initially most of the enzyme was obtained as insoluble protein aggregates, solubilization of protein was improved by optimization of protein induction with respect to growth temperature and isopropyl ß-D-1-thiogalactopyranoside concentrations. The induced protein was purified by immobilized metal affinity chromatography using nickel-nitrilotriacetic acid resin in a phosphate-free buffer leading to an accurate SBPase activity measurement. The present study demonstrates, for the first time, successful cloning of C. reinhardtii CC-503 SBPase in E. coli leading to the expression of a functionally active enzyme.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/genética , Clonación Molecular/métodos , Escherichia coli/genética , Monoéster Fosfórico Hidrolasas/genética , Chlamydomonas reinhardtii/química , Cromatografía de Afinidad , ADN Complementario/genética , Vectores Genéticos/genética , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Monoéster Fosfórico Hidrolasas/metabolismo , Agregado de Proteínas , Solubilidad
16.
Photosynth Res ; 118(1-2): 141-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24097049

RESUMEN

Parachlorella kessleri is a unicellular alga which grows in fresh as well as marine water and is commercially important as biomass/lipid feedstock and in bioremediation. The present study describes the successful transformation of marine P. kessleri with the help of Agrobacterium tumefaciens. Transformed marine P. kessleri was able to tolerate more than 10 mg l(-1) hygromycin concentration. Co-cultivation conditions were modulated to allow the simultaneous growth of both marine P. kessleri and A. tumefaciens. For co-cultivation, P. kessleri was shifted from Walne's to tris acetate phosphate medium to reduce the antibiotic requirement during selection. In the present study, the transfer of T-DNA was successful without using acetosyringone. Biochemical and genetic analyses were performed for expression of transgenes by GUS assay and PCR in transformants. Establishment of this protocol would be useful in further genetic modification of oil-bearing Parachlorella species.


Asunto(s)
Agrobacterium tumefaciens/fisiología , Chlorophyta/fisiología , Técnicas de Transferencia de Gen , Biocombustibles
17.
Environ Technol ; 44(8): 1179-1189, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34669547

RESUMEN

Rapid industrialization and unscientific disposal of industrial wastewaters have resulted in the pollution of water bodies and deterioration of water quality all over the globe. Valorization of industrial wastewaters will help in reducing the negative impact on the environment and will add value to the waste. The present study targets utilization of sugar processing industrial effluent for bio-based production of Volatile fatty acids (VFA) through anaerobic acidogenesis. Batch studies conducted to determine the VFA production potential of sugar processing industry effluent resulted in the VFA yield of 0.70 g/g COD utilized. Further continuous VFA production system was developed and optimization of Organic loading rate (OLR) (2-22 g COD/L·day) was carried out with constant Hydraulic retention time (HRT) of 1 day. The continuous reactors studies resulted in a maximum VFA yield of 0.72 g/g COD utilized and productivity of 11.04 g COD/L·day at OLR of 14 g COD/L·day and 22 g COD/L·day, respectively. The developed process will provide an environmentally safe and efficient method for the conversion of complex industrial wastes to valuable products such as VFA.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Azúcares , Reactores Biológicos , Ácidos Grasos Volátiles , Ácidos Grasos
18.
J Genet Eng Biotechnol ; 20(1): 38, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226194

RESUMEN

BACKGROUND: Microalgae have tremendous potential in CO2 sequestration, bioenergy, biofuels, wastewater treatment, and high-value metabolites production. However, large-scale production of microalgae is hampered due to photo-inhibition in outdoor cultivation. Mannitol, as an osmolyte, is known to relieve the stress produced under different abiotic stress conditions during the growth of a photosynthetic organism. RESULTS: In the present study, Mannitol-1-phosphate 5-dehydrogenase (Mt1D) was over-expressed to study the effect of mannitol over-production in Parachlorella kessleri under high-light induced stress. Over-expression of Mt1D led to 65% increased mannitol content in the transformed P. kessleri compared to that of wild type. Mannitol transformant demonstrated > 20-fold reduction in reactive oxygen species generation and 15% higher biomass productivity when grown in outdoor cultivation with high-light irradiance of 1200 µmol photons m-2 s-1. CONCLUSIONS: The current study establishes that a higher mannitol concentration provides stress shielding and leads to better acclimatization of transgenic microalgae against high-light generated stress. It also led to reduced ROS generation and improved growth of microalga under study. Thus, overexpression of the Mt1D gene in microalgae can be a suitable strategy to combat high-light stress.

19.
Bioresour Technol ; 325: 124636, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33513448

RESUMEN

Docosahexaenoic acid (DHA) rich oil or biomass is currently being produced by fermentation of thraustochytrids by repeated fed-batch. Continuous cultivation has not been successful for DHA production because of excess carbon and limited nitrogen conditions requirement. The present study describes an alternative integrative fermentation strategy to simultaneously produce high cell density, lipids and DHA in continuous mode for Aurantiochytrium limacinum. The high cell density system (≥120 g/L DCW basis) on carbon feeding led to DHA productivity of 0.508 g/L.h on poultry waste based medium with a process time of 48-54 h. The strategy integrates the advantages of repeated fed-batch for high cell densities and DHA content in continuous cultivation.


Asunto(s)
Ácidos Docosahexaenoicos , Estramenopilos , Biomasa , Recuento de Células , Fermentación
20.
Environ Sci Pollut Res Int ; 28(10): 11904-11914, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32048194

RESUMEN

Valorisation of organic wastes to produce industrially relevant commodity products is a sustainable, cost-effective and viable alternative providing a green platform for chemical production while simultaneously leading to waste disposal management. In the present study, organic wastes such as agricultural residue-derived sugars, oilseed meals, poultry waste and molasses were used for substituting expensive organic fermentation medium components. Moorella thermoacetica and Aurantiochytrium limacinum were adapted on these waste-derived hydrolysates to produce high volume-low value products such as bio-acetic acid (80% theoretical yields) and oil-rich fish/animal feed (more than 85% dry cell weight as compared with conventional nutrient sources) respectively. Use of these waste-derived nutrients led to ~ 75% and ~ 90% reduction in media cost for acetic acid and oil-rich biomass production respectively as compared with that of traditionally used high-priced medium components. The strategy will assist in the cost reduction for high volume-low value products while also ensuring waste recovery.


Asunto(s)
Moorella , Estramenopilos , Animales , Biomasa , Fermentación , Residuos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda