Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Toxicol Appl Pharmacol ; 234(2): 143-55, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19010342

RESUMEN

Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels on cell proliferation in the mouse tumorigenesis process are discussed.


Asunto(s)
Fungicidas Industriales/toxicidad , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Tretinoina/metabolismo , Animales , Western Blotting , Peso Corporal/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Hígado/efectos de los fármacos , Masculino , Ratones , Microsomas Hepáticos/efectos de los fármacos , Nitrilos/toxicidad , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Ionización de Electrospray , Tretinoina/análogos & derivados , Triazoles/toxicidad
2.
Toxicol Lett ; 164(1): 44-53, 2006 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-16406388

RESUMEN

This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods were used as measures of Cyp enzyme activities. Western analyses identified specific Cyp isoforms. Quantitative real-time reverse-transcription polymerase chain reaction (quantitative real time-RT-PCR) assays were used to quantitate the mRNA expression of specific Cyp genes induced by this conazole. Rats and mice were administered fluconazole 2, 25, or 50 mg/kg bw/d by gavage daily for 14 days. In rats, fluconazole treatment (50 mg/kg bw/d) significantly induced pentoxyresorufin O-dealkylation (PROD), benzyloxyresorufin O-dealkylation (BROD), and ethoxyresorufin O-dealkylation (EROD) hepatic microsomal activities. Fluconazole treatment significantly increased rat hepatic mRNA expression of CYP2B1 and CYP3A23/3A1 with dose-related responses. The highest dose of fluconazole gave a 128-fold induction of CYP2B1 and a 4.6-fold induction of CYP3A23/3A1 mRNA. CYP3A2 mRNA levels were also overexpressed 5.6-7.2-fold depending on dose. Western immunoblots of rat hepatic microsomal proteins identified Cyp isoforms: CYP1A1, CYP1A2, CYP2B1/2, CYP3A23/3A1, and Cyp3A2 with increased levels of CYP2B1/2 and CYP3A23/3A1 proteins. In mice, fluconazole induced BROD, PROD, EROD, and methoxyresorufin O-dealkylation hepatic microsomal activities after treatment with 25 and 50 mg/kg bw/d. Fluconazole increased mouse hepatic mRNA expression of Cyp2b10 (1.9-fold) and Cyp3a11 (2.6-fold) in the 50 mg/kg bw/d treatment group. In summary, these results indicated that fluconazole, a triazole-containing conazole, clearly induced CYP2B and CYP3A families of isoforms in rat liver and Cyp2b and Cyp3a families of isoforms in mouse liver.


Asunto(s)
Antifúngicos/efectos adversos , Sistema Enzimático del Citocromo P-450/genética , Fluconazol/efectos adversos , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Western Blotting , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Toxicol Lett ; 155(2): 277-87, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15603923

RESUMEN

Propiconazole is a N-substituted triazole used as a fungicide on fruits, grains, seeds, hardwoods, and conifers. In the present study, propiconazole was examined for its effects on the expression of hepatic cytochrome P450 genes and on the activities of P450 enzymes in male Sprague-Dawley rats and male CD-1 mice. Rats and mice were administered propiconazole by gavage daily for 14 days at doses of 10, 75, and 150 mg/kg body weight/day. Quantitative real time RT-PCR assays of rat hepatic RNA samples from animals treated at the 150 mg/kg body weight/day dose revealed significant mRNA overexpression of the following genes compared to control: CYP1A2 (1.62-fold), CYP2B1 (10.8-fold), CYP3A1/CYP3A23 (2.78-fold), and CYP3A2 (1.84-fold). In mouse liver, propiconazole produced mRNA overexpression of Cyp2b10 (2.39-fold) and Cyp3a11 (5.19-fold). mRNA expression of CYP1A1 was not detected in liver tissues from treated or controls animals from either species. Propiconazole significantly induced both pentoxyresorufin O-dealkylation (PROD) and methoxyresorufin O-dealkylation (MROD) activities in both rat and mouse liver at the 150 mg/kg body weight/day and 75 mg/kg body weight/day doses. In summary, these results indicated that propiconazole induced CYP1A2 in rat liver and CYP2B and CYP3A families of isoforms in rat and mouse liver.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Fungicidas Industriales/toxicidad , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Triazoles/toxicidad , Administración Oral , Animales , Peso Corporal/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/genética , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Anal Biochem ; 355(2): 213-23, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16797471

RESUMEN

Benzo[a]pyrene-7,8-quinone (BPQ) is one of the reactive metabolites of the widely distributed archetypal polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). The formation of BPQ from B[a]P through trans-7,8-dihydroxy-7,8-dihydroB[a]P by the mediation of aldo-keto reductases and its role in the genotoxicity and carcinogenesis of B[a]P currently are under extensive investigation. Toxicity pathways related to BPQ are believed to include both stable and unstable (depurinating) DNA adduct formation as well as reactive oxygen species. We previously reported the complete characterization of four novel stable BPQ-deoxyguanosine (dG) and two BPQ-deoxyadenosine (dA) adducts (Balu et al., Chem. Res. Toxicol. 17 (2004) 827-838). However, the identification of BPQ-DNA adducts by 32P postlabeling methods from in vitro and in vivo exposures required 3'-monophosphate derivatives of BPQ-dG, BPQ-dA, and BPQ-deoxycytidine (dC) as standards. Therefore, in the current study, BPQ adducts of dGMP(3'), dAMP(3'), and dCMP(3') were prepared. The syntheses of the BPQ-3'-mononucleotide standards were carried out in a manner similar to that reported previously for the nucleoside analogs. Reaction products were characterized by UV, LC/MS analyses, and one- and two-dimensional NMR techniques. The spectral studies indicated that all adducts existed as diastereomeric mixtures. Furthermore, the structural identities of the novel BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adducts were confirmed by acid phosphatase dephosphorylation of the BPQ-nucleotide adducts to the corresponding known BPQ-nucleoside adduct standards. The BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adduct standards were used in 32P postlabeling studies to identify BPQ adducts formed in vitro with calf thymus DNA and DNA homopolymers. 32P postlabeling analysis revealed the formation of 8 major and at least 10 minor calf thymus DNA adducts. Of these BPQ-DNA adducts, the following were identified: 1 BPQ-dGMP adduct, 2 BPQ-dAMP adducts, and 3 BPQ-dCMP adducts. This study represents the first reported example of the characterization of stable BPQ-DNA adducts in isolated mammalian DNA and is expected to contribute significantly to the future BPQ-DNA adduct studies in vivo and thereby to the contribution of BPQ in B[a]P carcinogenesis.


Asunto(s)
Benzo(a)pireno/análisis , Benzopirenos/análisis , Aductos de ADN/análisis , ADN/química , Radioisótopos de Fósforo/química , Quinonas/análisis , Oxidorreductasas de Alcohol/metabolismo , Benzo(a)pireno/análogos & derivados , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , Benzopirenos/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidad , Cromatografía Líquida de Alta Presión , ADN/metabolismo , Aductos de ADN/química , Aductos de ADN/metabolismo , Nucleótidos de Desoxiadenina/análisis , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxicitosina/análisis , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiguanina/análisis , Nucleótidos de Desoxiguanina/química , Espectroscopía de Resonancia Magnética , Mutágenos/metabolismo , Mutágenos/toxicidad , Quinonas/química , Quinonas/metabolismo , Especies Reactivas de Oxígeno/química , Estándares de Referencia
5.
Toxicol Appl Pharmacol ; 215(3): 274-84, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16730040

RESUMEN

Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and hypotheses on potential mechanisms of action for this class of chemicals. Adult male CD-1 mice were exposed daily for 14 days to fluconazole, myclobutanil, propiconazole, or triadimefon at three dose levels by oral gavage. Doses were based on previous studies that resulted in liver hypertrophy or hepatotoxicity. All four triazoles caused hepatocyte hypertrophy, and all except triadimefon increased relative liver/body weight ratios at the middle and high dose levels. CYP enzyme activities were also induced by all four triazoles at the middle and high doses as measured by the dealkylations of four alkoxyresorufins, although some differences in substrate specificity were observed. Consistent with this common histopathology and biochemistry, several CYP and xenobiotic metabolizing enzyme (XME) genes were differentially expressed in response to all four (Cyp2d26 and Cyp3a11), or three of the four (Cyp2c40, Cyp2c55, Ces2, Slco1a4) triazoles. Differential expression of numerous other CYP and XME genes discriminated between the various triazoles, consistent with differences in CYP enzyme activities, and indicative of possible differences in mechanisms of hepatotoxicity or dose response. Multiple isoforms of Cyp1a, 2b, 2c, 3a, and other CYP and XME genes regulated by the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) were differentially expressed following triazole exposure. Based on these results, we expanded on our original hypothesis that triazole hepatotoxicity was mediated by CYP induction, to include additional XME genes, many of which are modulated by CAR and PXR.


Asunto(s)
Antifúngicos/toxicidad , Fungicidas Industriales/toxicidad , Hígado/efectos de los fármacos , Triazoles/toxicidad , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/enzimología , Análisis de Secuencia por Matrices de Oligonucleótidos
6.
Chem Res Toxicol ; 17(6): 827-38, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15206904

RESUMEN

Benzo[a]pyrene (B[a]P) is an archetypal member of the family of polycyclic aromatic hydrocarbons (PAHs) and is a widely distributed environmental pollutant. B[a]P is known to induce cancer in animals, and B[a]P-containing complex mixtures are human carcinogens. B[a]P exerts its genotoxic and carcinogenic effects through metabolic activation forming reactive intermediates that damage DNA. DNA adduction by B[a]P is a complex phenomenon that involves the formation of both stable and unstable (depurinating) adducts. One pathway by which B[a]P can mediate genotoxicity is through the enzymatic formation of B[a]P-7,8-quinone (BPQ) from B[a]P-7,8-diol by members of the aldo-keto-reductase (AKR) family. Once formed, BPQ can act as a reactive Michael acceptor that can alkylate cellular nucleophiles including DNA and peptides. Earlier studies have reported on the formation of stable and depurinating adducts from the reaction of BPQ with DNA and nucleosides, respectively. However, the syntheses and characterization of the stable adducts from these interactions have not been addressed. In this study, the reactivity of BPQ toward 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) nucleosides under physiological pH conditions is examined. The identification and characterization of six novel BPQ-nucleoside adducts obtained from the reaction of BPQ and dG or dA in a mixture of phosphate buffer and dimethylformamide are reported. The structures of these adducts were determined by ultraviolet spectroscopy, electrospray mass spectrometry, and NMR experiments including (1)H, (13)C, two-dimensional COSY, one-dimensional NOE, ROESY, HMQC, HSQC, and HMBC. The reaction of BPQ with dG afforded four unique Michael addition products: two diastereomers of 8-N(1),9-N(2)-deoxyguanosyl-8,10-dihydroxy-9,10-dihydrobenzo[a]pyren-7(8H)-one (BPQ-dG(1,2)) and two diastereomers of 10-(N(2)-deoxyguanosyl)-9,10-dihydro-9-hydroxybenzo[a]pyrene-7,8-dione (BPQ-dG(3,4)). The BPQ-dG(1,2)( )()adducts suggest a 1,6-Michael addition reaction of dG, an oxidation of the hydroquinone to the quinone, a 1,4-Michael addition of water, and an internal cyclization. The BPQ-dG(3,4)( )()adducts suggest a 1,4-Michael addition reaction of dG, an oxidation of the hydroquinone to the quinone, and a 1,6-Michael addition of water. Under similar but extended reaction conditions, the reaction of BPQ with dA produced only one diastereomeric pair of adducts identified as 8-N(6),10-N(1)-deoxyadenosyl-8,9-dihydroxy-9,10-dihydrobenzo[a]pyren-7(8H)-one (BPQ-dA(1,2)). The BPQ-dA(1,2)( )()adducts suggest a 1,4-Michael addition reaction of dA, an oxidation of the hydroquinone to the quinone, a 1,6-Michael addition of water, and an internal cyclization. As considerable efforts have been placed in documenting the genotoxic effects of BPQ, this first report of the identification and characterization of these stable adducts of BPQ formed under physiological pH conditions is expected to contribute significantly to the area of BPQ-mediated genotoxicity and carcinogenesis.


Asunto(s)
Benzo(a)pireno/análisis , Benzopirenos/análisis , Aductos de ADN/análisis , Desoxiadenosinas/análisis , Desoxiguanosina/análisis , Biotransformación , Cromatografía Líquida de Alta Presión , Dimetilformamida , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda